關(guān)于x的一元二次方程mx2-(1-m)x+m=0有實數(shù)根,求m的取值范圍.
【答案】分析:由題意可得它的判別式△=(1-m)2-4m•m≥0,由此求得m的取值范圍.
解答:解:由于關(guān)于x的一元二次方程mx2-(1-m)x+m=0有實數(shù)根,故它的判別式△=(1-m)2-4m•m≥0,
求得-1≤m≤,故m的范圍為[-1,].
點評:本題主要考查一元二次方程有解的性質(zhì),屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知有序?qū)崝?shù)對(a,b)滿足a∈[O,3],b∈[0,2],則關(guān)于x的一元二次方程x2+2ax+b2=0有實數(shù)根的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的一元二次方程mx2+(m-1)x+m=0沒有實數(shù)根,則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次方程x2+(4m+1)x+2m-1=0.
(1)求證:不論為任何實數(shù),方程總有兩個不相等的實數(shù)根;
(2)若方程的兩根為x1,x2,且滿足
1
x1
+
1
x2
=-
1
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的一元二次方程x2+tx+|a+2|+|a-1|=0對任意a∈R無實根,求實數(shù)t的取值范圍是(  )

查看答案和解析>>

同步練習冊答案