精英家教網(wǎng)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點M(1,1)的弦AB.
(1)若點M恰為弦AB的中點,求直線AB的方程;
(2)求過點M的弦的中點的軌跡方程.
分析:本題考查的知識點是直線的一般式方程及動點軌跡方程的求法,(1)由于弦AB過點M(1,1),故我們可設(shè)出直線AB的點斜式方程,聯(lián)立直線與圓的方程后,根據(jù)韋達(dá)定理(根與系數(shù)的關(guān)系),我們結(jié)合點M恰為弦AB的中點,可得到一個關(guān)于斜率k的方程,解方程求出k值后,代入整理即可得到直線AB的方程.(2)設(shè)AB弦的中點為P,則由A,B,M,P四點共線,易得他們確定直線的斜率相等,由此可構(gòu)造一個關(guān)于x,y的關(guān)系式,整理后即可得到過點M的弦的中點的軌跡方程.
解答:解:(1)設(shè)直線AB的斜率為k,則AB的方程可設(shè)為y-1=k(x-1).
y-1=k(x-1)
x2
16
+
y2
4
=1
得x2+4(kx+1-k)2=16
得(1+4k2)x2+8k(1-k)x+4(1-k2)-16=0
設(shè)A(x1,y1),B(x2,y2),則x1+x2=
8k(k-1)
1+4k2
,
而M(1,1)是AB中點,則
x1+x2
2
=1

綜上,得
8k(k-1)
1+4k2
=2,解得k=-
1
4

直線AB的方程為y-1=-
1
4
(x-1),即x+4y-5=0

(2)設(shè)弦AB的中點為P(x,y)
∵A,B,M,P四點共線,
∴kAB=kMP
即(-
1
4
)•
x1+x2
y1+y2
=
y-1
x-1
,而x1+x2=2x,y1+y2=2y

(-
1
4
)
2x
2y
=
y-1
x-1
,整理,得軌跡方程為x2+4y2-x-4y=0
點評:在求直線方程時,應(yīng)先選擇適當(dāng)?shù)闹本方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點的直線,故在解題時,若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點斜式,應(yīng)先考慮斜率不存在的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓G:(x-2)2+y2=r2是橢圓
x216
+y2=1
的內(nèi)接△ABC的內(nèi)切圓,其中A為橢圓的左頂點,
(1)求圓G的半徑r;
(2)過點M(0,1)作圓G的兩條切線交橢圓于E,F(xiàn)兩點,證明:直線EF與圓G相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在O為坐標(biāo)原點的直角坐標(biāo)系中,點A(4,-3)為△OAB的直角頂點.已知|
AB
|=2|
OA
|
且點B的縱坐標(biāo)大于零.
(1)求圓x2-6x+y2+2y=0關(guān)于直線OB對稱的圓的方程;
(2)設(shè)直線l平行于直線AB且過點(0,a),問是否存在實數(shù)a,使得橢圓
x2
16
+y2=1
上有兩個不同的點關(guān)于直線l對稱,若不存在,請說明理由;若存在,請求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出下列命題:
①若p,q是兩個命題,則“p∧q為真”是“p∨q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1的兩個焦點為F1,F(xiàn)2,且弦AB過點F1,則△ABF2的周長為16,
③過點(0,2)與拋物線y2=-5x僅有一個公共點的直線有3條;
④導(dǎo)數(shù)為0的點一定是函數(shù)的極值點.
其中不是真命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
16
+
y2
4
=1
上一點P作圓x2+y2=2的兩條切線,切點為A,B,過A,B的直線與兩坐標(biāo)軸的交點為M,N,則△MON的面積的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在以O(shè)為坐標(biāo)原點的直角坐標(biāo)系中,
OA
AB
,點A(4,-3),B點在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標(biāo)及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關(guān)于直線OB對稱的圓的方程;
(3) 設(shè)直線l
AB
為方向向量且過(0,a)點,問是否存在實數(shù)a,使得橢圓
x2
16
+y2=1上有兩個不同的點關(guān)于直線l對稱.若不存在,請說明理由; 存在請求出實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案