函數(shù)y=x•e1-2x的導(dǎo)數(shù)為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)的運(yùn)算法則,求導(dǎo)即可,
解答: 解:y′=x′•e1-2x+x•(e1-2x)′=e1-2x+x•e1-2x•(1-2x)′=e1-2x-2x2•e1-2x
故答案為:e1-2x-2x2•e1-2x
點(diǎn)評(píng):本題考查了復(fù)合函數(shù)的導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
=(3,-5),
b
=(10,λ),
a
b
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的矩形長(zhǎng)為20,寬為10.在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

英語(yǔ)老師準(zhǔn)備存款5000元,銀行的定期存款中存期為1年的年利率為1.98%.試計(jì)算五年后本金和利息共有
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=3x+3-x與g(x)=3x-3-x的定義域均為R,則( 。
A、f(x)與g(x) 均為偶函數(shù)
B、f(x )為偶函數(shù),g(x)為奇函數(shù)
C、f(x)與g(x) 均為奇函數(shù)
D、f(x)為奇函數(shù),g(x)為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a7=
π
6
,則tan(a2+a12)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,記事件A為“函數(shù)f(x)滿足條件:
f(2)≤12
f(-1)≤1
,則事件A發(fā)生的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出函數(shù)f(x)=|x-2|-|x+1|的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≥f(x2),則稱函數(shù)f(x)在D上為不增函數(shù).設(shè)函數(shù)f(x)為定義在[0,2]上的不增函數(shù),且滿足以下三個(gè)條件:①f(0)=2;②f(2-x)+f(x)=2,x∈[0,2]; ③當(dāng)x∈[0,
1
2
]時(shí),f(x)≤2-2x恒成立.則f(
8
9
)+f(
11
9
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案