已知函數(shù)f(x)=xlnx-x,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由已知得f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的單調(diào)區(qū)間和極值.
解答: 解:∵f(x)=xlnx-x,
∴f(x)的定義域?yàn)椋?,+∞),
f′(x)=lnx,
由f′(x)>0,得x>1;由f′(x)<0,得0<x<1.
∴f(x)的增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1).
∴x=1時(shí),f(x)極小值=f(1)=-1.
點(diǎn)評(píng):本題主要考查極值的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,分類(lèi)討論等綜合解題能力,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π+α)=
1
2
,則sin(3π-α)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:①隨機(jī)事件的概率不可能為0;
②事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大;
③擲硬幣100次,結(jié)果51次出現(xiàn)正面,則出現(xiàn)正面的概率是
51
100
;
④互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件;
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

入射光線?從P(2,1)出發(fā),經(jīng)x軸反射后,通過(guò)點(diǎn)Q(4,3),則入射光線?所在直線的方程為( 。
A、y=0
B、x-2y+5=0
C、2x+y-5=0
D、2x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-5x+4≤0},B={x|x2-(a+2)x+2a≤0},若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U(A∩B),∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=x2-(m+2)x+4,根據(jù)下列條件分別求實(shí)數(shù)m的取值范圍.
(1)圖象在x軸上方;
(2)頂點(diǎn)在x軸上;
(3)圖象與x軸有兩個(gè)交點(diǎn);
(4)圖象與x軸有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知a2=9,a5=243,
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若bn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-alnx(a∈R).
(1)若曲線y=f(x)在x=1處的切線的方程為3x-y-3=0,求實(shí)數(shù)a的值;
(2)若f(x)≥0恒成立,求證:a=1
(3)若a<0,且h(x)=f(x)+
4
x
在(0,1]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案