如圖,在正方體中,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求直線BE與平面所成角的正弦值.
(1)見(jiàn)解析;(2)見(jiàn)解析;(3)。
解析試題分析:(1)設(shè),證明即可;(2)證明,,則
;(3)根據(jù)線面角的定義結(jié)合(2)可知直線BE與平面所成角是∠BEO。
(1)設(shè),、分別是、的中點(diǎn),∥
又平面,平面,∥平面 4分
(2)平面,平面, 5分
又,,平面 7分
平面,平面平面 8分
(3)由(2)可知直線BE與平面所成角是∠BEO 9分
設(shè)正方體棱長(zhǎng)為a,在Rt△BOE中, 11分
∴,即直線BE與平面所成角的正弦值為 12分
考點(diǎn):(1)線面平行的判定定理;(2)面面垂直的判定定理;(3)線面角的定義。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知的直徑AB=3,點(diǎn)C為上異于A,B的一點(diǎn),平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:平面VAC;
(2)若AC=1,求直線AM與平面VAC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn).
(1)求證://平面;
(2)若平面平面,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°.
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為.點(diǎn)分別是棱上共面的四點(diǎn),平面平面,平面.
證明:
若,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是邊長(zhǎng)為2的正方形,平面,,,且.
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則;
②若,則;
③若,則;
④若,則;
其中正確命題有_____________.(填上你認(rèn)為正確命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com