(本小題滿分12分)
如圖,三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:;
(Ⅱ)若,,,求二面角的余弦值.

(Ⅰ)詳見解析;(Ⅱ)

解析試題分析:(Ⅰ)由側(cè)面為菱形得,結(jié)合平面,故,且的中點(diǎn).故垂直平分線段,則;(Ⅱ)求二面角大小,可考慮借助空間直角坐標(biāo)系.故結(jié)合已知條件尋找三條兩兩垂直相交的直線是解題關(guān)鍵.當(dāng)時(shí),三角形為等腰直角三角形,故,結(jié)合已知條件可判斷,故,從而兩兩垂直.故以為坐標(biāo)原點(diǎn),的方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/7/vgrg84.png" style="vertical-align:middle;" />軸正方向建立空間直角坐標(biāo)系,用坐標(biāo)表示相關(guān)點(diǎn)的坐標(biāo).分別求半平面的法向量,將求二面角問(wèn)題轉(zhuǎn)化為求法向量夾角處理.
試題解析:(I)連接,交,連接.因?yàn)閭?cè)面為菱形,所以,且的中點(diǎn).又,所以平面,故.又,故
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/2/rlepj.png" style="vertical-align:middle;" />,且的中點(diǎn),所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/3mash1.png" style="vertical-align:middle;" />,.故,從而兩兩垂直.以為坐標(biāo)原點(diǎn),的方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/7/vgrg84.png" style="vertical-align:middle;" />軸正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/a/cbpbj.png" style="vertical-align:middle;" />,所以為等邊三角形.又,則,,,
,,
設(shè)是平面的法向量,則所以可取
設(shè)是平面的法向量,則同理可取

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐的底面為菱形,,且,,分別是的中點(diǎn).
(1)求證:∥平面;
(2)過(guò)作一平面交棱于點(diǎn),若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正方體中,的中點(diǎn).

(1)求證:平面
(2)求證:平面平面;
(3)求直線BE與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,,底面為梯形,,且.(10分)

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面.

證明:
,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正三棱柱中,點(diǎn)在邊上,
(1)求證:平面
(2)如果點(diǎn)的中點(diǎn),求證://平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如題14圖,面的中點(diǎn),內(nèi)的動(dòng)點(diǎn),且到直線的距離為的最大值為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•重慶)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(1)求PA的長(zhǎng);
(2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案