【題目】已知函數(shù)f(x)=2sinxcos(x-).

(Ⅰ)求函數(shù)f(x)的最小正周期.

(Ⅱ)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的取值范圍.

【答案】;(f(x)[0,1+].

【解析】試題分析:(Ⅰ)由兩角差的余弦公式展開,結(jié)合二倍角公式化簡(jiǎn)得f(x)=sin(2x-)+,進(jìn)而得周期;

(Ⅱ)由x∈[0, ]得2x-[-,],即可得sin(2x-)[-,1],從而得解.

試題解析:

因?yàn)?/span>f(x)=2sinx×cos(x-),

所以f(x)=2sinx×(cosxcos+sinxsin)=sinx×cosx+sin2x=sin2x+ (1-cos2x)=sin(2x-)+.

(Ⅰ)函數(shù)f(x)的最小正周期為.

(Ⅱ)因?yàn)?/span>x[0, ],所以2x-[-,].

所以sin(2x-)[-,1].

所以f(x)[0,1+].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以A表示值域?yàn)镽的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)組成的集合:對(duì)于函數(shù),存在一個(gè)正數(shù)M,使得函數(shù)的值域包含于區(qū)間[-M,M]。例如,當(dāng), 時(shí), ,現(xiàn)有如下命題:

①設(shè)函數(shù)的定義域?yàn)镈,則“”的充要條件是“

②若函數(shù),則有最大值和最小值;

③若函數(shù), 的定義域相同,且, ,則

④若函數(shù),則有最大值且,

其中的真命題有_____________。(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙,丙,丁四名同學(xué)做傳遞手帕游戲(每位同學(xué)傳遞到另一位同學(xué)記傳遞1次),手帕從甲手中開始傳遞,經(jīng)過5次傳遞后手帕回到甲手中,則共有__________種不同的傳遞方法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時(shí), 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列 , , 期待數(shù)列

;

.

)分別寫出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少汽車尾氣排放,提高空氣質(zhì)量,各地紛紛推出汽車尾號(hào)限行措施.為做好此項(xiàng)工作,某市交警支隊(duì)對(duì)市區(qū)各交通樞紐進(jìn)行調(diào)查統(tǒng)計(jì),表中列出了某交通路口單位時(shí)間內(nèi)通過的1000輛汽車的車牌尾號(hào)記錄:

由于某些數(shù)據(jù)缺失,表中以英文字母作標(biāo)識(shí).請(qǐng)根據(jù)圖表提供的信息計(jì)算:

(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽出20輛,了解駕駛員對(duì)尾號(hào)限行的建議,應(yīng)分別從一、二、三、四組中各抽取多少輛?

(Ⅱ)以頻率代替概率,在此路口隨機(jī)抽取4輛汽車,獎(jiǎng)勵(lì)汽車用品.用表示車尾號(hào)在第二組的汽車數(shù)目,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BCCA,AB為折痕折起△DBC,△ECA,△FAB,使得DE、F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱錐PABC,DE,F分別為PC,AC,AB的中點(diǎn)已知PAAC,PA6BC8,DF5.

求證(1)直線PA∥平面DEF

(2)平面BDE⊥平面ABC.

查看答案和解析>>

同步練習(xí)冊(cè)答案