分析 由已知得:4(sin2x)2=1+2sinθcosθ,將cos2x=sinθcosθ代入得:4(sin2x)2=1+2cos2x,整理可得4cos22x+cos2x-2=0,即可得解.
解答 解:2sin2x=sinθ+cosθ,
平方得:4(sin2x)2=1+2sinθcosθ,
將cos2x=sinθcosθ代入得:
4(sin2x)2=1+2cos2x,
4(1-cos22x)=1+2cos2x,
4(1-cos22x)=1+(1+cos2x),
4cos22x+cos2x-2=0,
cos2x=$\frac{-1±\sqrt{33}}{8}$.
又cos2x=2cos2x-1=2sinxcosx-1=-(sinx-cosx)2<0,
可得:cos2x=$\frac{-1-\sqrt{33}}{8}$.
故答案為:$\frac{-1-\sqrt{33}}{8}$.
點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,一元二次方程的解法,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com