【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.
(1)若曲線參數(shù)方程為:(為參數(shù)),求曲線的直角坐標方程和曲線的普通方程;
(2)若曲線參數(shù)方程為:(為參數(shù)),,且曲線與曲線交點分別為,,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在坐標軸上,且經(jīng)過,.
(Ⅰ)求橢圓的標準方程和離心率;
(Ⅱ)四邊形的四個頂點都在橢圓上,且對角線,過原點,若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)=
(I)求函數(shù)的單調(diào)區(qū)間;
(II)設函數(shù)=(x+1)lnx-x+1,證明:當x>0且x≠1時,x-1與同號。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列推理合理的是( 。
A. 若函數(shù)y=f(x)是增函數(shù),則f'(x)>0
B. 因為a>b(a,b∈R),則a+2i>b+2i(i是虛數(shù)單位)
C. A是三角形ABC的內(nèi)角,若cosA>0,則此三角形為銳角三角形
D. α,β是銳角△ABC的兩個內(nèi)角,則sinα>cosβ
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),為自然對數(shù)的底數(shù))的圖象在點處的切線與該函數(shù)的圖象恰好有三個公共點,求實數(shù)的取值范圍是( )
A. B.
C. 或D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強度和聲音能量(,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.
表中,.
(1)根據(jù)散點圖判斷,與哪一個適宜作為聲音強度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)表中數(shù)據(jù),求聲音強度關(guān)于聲音能量的回歸方程;
(3)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是和,且.已知點的聲音能量等于聲音能量與之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是兩個不同的平面,是兩條不同的直線,有如下四個命題:
①若,則; ②若,則;
③若,則; ④若,則.
其中真命題為_________(填所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年研發(fā)費用和年利潤的具體數(shù)據(jù)如表:
年研發(fā)費用(百萬元) |
|
|
|
|
|
年利潤 (百萬元) |
|
|
|
|
|
數(shù)據(jù)表明與之間有較強的線性關(guān)系.
(1)求對的回歸直線方程;
(2)如果該企業(yè)某年研發(fā)費用投入8百萬元,預測該企業(yè)獲得年利潤為多少?
參考數(shù)據(jù):回歸直線的系數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com