【題目】噪聲污染已經成為影響人們身體健康和生活質量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關系,將測量得到的聲音強度和聲音能量,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

表中,

(1)根據(jù)散點圖判斷,哪一個適宜作為聲音強度關于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強度關于聲音能量的回歸方程;

(3)當聲音強度大于60分貝時屬于噪音,會產生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.已知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為:

【答案】(1)見解析;(2);(3)見解析.

【解析】分析:(1)根據(jù)散點圖,可知(2)利用回歸系數(shù)公式先求出D關于w的回歸方程,再轉化為D關于I的回歸方程;

(3)利用對數(shù)的運算性質和基本不等式求出I的最小值,計算的最小值,從而作出判斷

詳解:(1)更適合.

(2)令,先建立關于的線性回歸方程,

由于,

,

關于的線性回歸方程是,即關于的回歸方程是

(2)點的聲音能量,∵

,

根據(jù)(1)中的回歸方程,點的聲音強度的預報值

∴點會受到噪聲污染的干擾.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于(參考公式:)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數(shù)學分數(shù)(滿分分),現(xiàn)有甲、乙兩班本次考試數(shù)學分數(shù)如下列莖葉圖所示:

(1)根據(jù)莖葉圖求甲、乙兩班同學成績的中位數(shù),并將以班同學的成績的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較在一模考試中,甲、乙兩班同學數(shù)學成績的平均水平和分數(shù)的分散程度(不要求計算出具體值,給出結論即可);

(3)若規(guī)定分數(shù)在 的成績?yōu)榱己,分?shù)在 的成績?yōu)閮?yōu)秀,現(xiàn)從甲、乙兩班成績?yōu)閮?yōu)秀的同學中,按照各班成績?yōu)閮?yōu)秀的同學人數(shù)占兩班總的優(yōu)秀人數(shù)的比例分層抽樣,共選出 位同學參加數(shù)學提優(yōu)培訓,求這 位同學中恰含甲、乙兩班所有 分以上的同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.

(1)若曲線參數(shù)方程為:為參數(shù)),求曲線的直角坐標方程和曲線的普通方程;

(2)若曲線參數(shù)方程為:為參數(shù)),,且曲線與曲線交點分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運行如圖所示的程序框圖,若輸出的的值為71,則判斷框中可以填( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過原點的直線被圓所截得的弦長為,則的傾斜角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的焦點為,點是拋物線上一點,且

(1)求的值;

(2)若為拋物線上異于的兩點,且.記點到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)求上的單調性及極值;

(2)若,對任意的,不等式都在上有解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案