設(shè)集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的


  1. A.
    充分而不必要條件
  2. B.
    必要而不充分條件
  3. C.
    充分必要條件
  4. D.
    既不充分也不必要條件
B
分析:由題意N⊆M,由子集的定義可選.
解答:設(shè)集合M={x|0<x≤3},N={x|0<x≤2},M?N,
所以若“a∈M”推不出“a∈N”;
若“a∈N”,則“a∈M”,
所以“a∈M”是“a∈N”的必要而不充分條件,
故B.
點評:本題考查充要條件的判斷和集合包含關(guān)系之間的聯(lián)系,屬基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)集合M={x|0≤x≤1},N={y|0≤y≤1}.如圖四個圖象中,表示從M到N的映射的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0<x≤3},N={x|-1<x≤2},那么“a∈M”是“a∈N”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0<x≤3},集合N={x|0<x≤2},那么“a∈M”是“a∈N”的
必要不充分
必要不充分
條件.(用“充分不必要條件,必要不充分條件,充要條件”填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0≤x≤1},函數(shù)f(x)=
1
1-x
的定義域為N,則M∩N=
[0,1)
[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②“|
a
+
b
|<1
”是“|
a
|+|
b
|<1
”的必要不充分條件;
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④命題P:“?x0∈R,x02-x0-1>0”的否定?P:“?x∈R,x2-x-1≤0”.
則上述命題中為真命題的是( 。

查看答案和解析>>

同步練習(xí)冊答案