圖中表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n是常數(shù),且mn<0)圖象的是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)“兩數(shù)相乘,同號得正,異號得負”分兩種情況討論mn的符號,然后根據(jù)m、n同正時,同負時,一正一負或一負一正時,利用一次函數(shù)的性質(zhì)進行判斷.
解答: 解:①當(dāng)mn>0,m,n同號,同正時y=mx+n過第一,二,三象限,同負時過二,三,四象限;
②當(dāng)mn<0時,m,n異號,則y=mx+n過一,三,四象限或一,二,四象限.
y=mnx過原點,二、四象限.由題意m,n是常數(shù),且mn<0.
故選:C.
點評:主要考查了一次函數(shù)的圖象性質(zhì),要掌握它的性質(zhì)才能靈活解題.
一次函數(shù)y=kx+b的圖象有四種情況:
①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;
②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;
③當(dāng)k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;
④當(dāng)k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由集合A={0,1}所有真子集為元素構(gòu)成的集合為M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

式子[(-2)2] 
1
2
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)(
1
300
 -
1
2
+10(
3
25
 
1
2
×(
27
16
 
1
4
-
10
2-
3

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
+2 1+log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a1、b1、c1、a2、b2、c2均為非零實數(shù),不等式a1x2+b1x+c1<0和a2x2+b2x+c2<0的解集分別為集合M和N,那么“
a1
a2
=
b1
b2
=
c1
c2
”是“M=N”( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個正比例函數(shù)的圖象經(jīng)過點(-2,4),則這個正比例函數(shù)的表達式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x≥1
x+2y≥3
2x+y≤3
,則z=x-y的最小值是( 。
A、-3
B、0
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=3,b=4,c=
37
,則最大角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|x>1},B={x∈R|x2-x-2<0},則A∩B等于( 。
A、(-1,2)
B、(-1,+∞)
C、(-1,1)
D、(1,2)

查看答案和解析>>

同步練習(xí)冊答案