計(jì)算:
(1)(
1
300
 -
1
2
+10(
3
25
 
1
2
×(
27
16
 
1
4
-
10
2-
3

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
+2 1+log23
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)的性質(zhì)和運(yùn)算法則求解.
(2)利用對(duì)數(shù)的性質(zhì)和對(duì)數(shù)的運(yùn)算法則求解.
解答: 解:(1)(
1
300
 -
1
2
+10(
3
25
 
1
2
×(
27
16
 
1
4
-
10
2-
3

=10
3
+2×(3×
27
16
 
1
4
-10(2+
3

=10
3
+3-20-10
3

=-17.
(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
+2 1+log23
=
5
2
lg2
-lg7-2lg2+
1
2
lg5
+lg7+6
=
1
2
(lg2+lg5)
+6
=
13
2
點(diǎn)評(píng):本題考查指數(shù)式、對(duì)數(shù)式求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)、對(duì)數(shù)的性質(zhì)和運(yùn)算法則的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=2,p,q∈N*,且p+q=18,則Sp•Sq的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

地面氣溫是20℃,如果每升高100m,氣溫下降6℃,則氣溫t(℃)與高度h(m)的函數(shù)關(guān)系式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩個(gè)命題:p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立,q:函數(shù)f(x)=-(4-2a)x在(-∞,+∞)上是減函數(shù),若命題p∨q為真,p∧q為假,則實(shí)數(shù)a的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足約束條件
x+y≥3
x-y≥-1
2x-y≤3
的變量x,y使得2x+3y+a≥0恒成立,則實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-x
1+x

(Ⅰ)若f(a)=-
1
3
,求實(shí)數(shù)a的值;
(Ⅱ)求證:f(
1
x
)=-f(x)(x≠0且x≠-1);
(Ⅲ)求f(
1
2012
)+f(
1
2011
)+…+f(
1
2
)+f(1)+f(2)+…+f(2011)+f(2012)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖中表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n是常數(shù),且mn<0)圖象的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是( 。
A、若命題“p∧q”為真命題,則“p∨q”為真命題
B、命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
C、命題“?x∈R,x2-2x=0”的否定是“?x∈R,x2-2x≠0”
D、“x>1”是“|x|>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-1
x
的定義域?yàn)?div id="nrhplzz" class='quizPutTag' contenteditable='true'> 
(用區(qū)間表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案