(理)已知a∈R,函數(shù)(其中e≈2.718)

(Ⅰ)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;

(Ⅱ)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請(qǐng)說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x2(x-a).
(1)若函數(shù)f(x)在區(qū)間(0,
2
3
)
內(nèi)是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值h(a);
(3)對(duì)(2)中的h(a),若關(guān)于a的方程h(a)=m(a+
1
2
)
有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a∈R,函數(shù)f(x)=x2(x-a),若f′(1)=1.求a的值并求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程y=g(x);
(2)已知函數(shù)f(x)=
ax22x+b
的圖象在點(diǎn)(2,f(2))處的切線方程為y=2.求a,b的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=(-x2+ax)e-x(x∈R,e為自然對(duì)數(shù)的底數(shù)).
(I)當(dāng)a=-2時(shí),求函數(shù),f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)在(-1,1)內(nèi)單調(diào)遞減,求a的取值范圍;
(III)函數(shù)f(x)是否為R上的單調(diào)函數(shù),若是,求出a的取值范圍:若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
1-
1
x
,        x>0
(a-1)x+1,  x≤ 0

(1)求f(1)的值;    
(2)證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;     
(3)求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案