精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大小;
(2)若c=2,則當a,b分別取何值時,△ABC的面積取得最大值,并求出其最大值.

【答案】
(1)解:∵ (a﹣ccosB)=bsinC,由正弦定理可得: (sinA﹣sinCcosB)=sinBsinC,

化為: [sin(B+C)﹣sinCcosB]= sinBcosC=sinBsinC,

∵sinB≠0,

∴tanC=

∵C∈(0,π),

∴C=


(2)解:c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcos

∴4≥2ab﹣ab=ab>0,當且僅當a=b=2時取等號.

又SABC= sin = ab≤ ,當且僅當a=b=2時取等號


【解析】(1) (a﹣ccosB)=bsinC,由正弦定理可得: (sinA﹣sinCcosB)=sinBsinC,由sinB≠0,展開可得tanC= ,即可得出.(2)由余弦定理可得:c2=a2+b2﹣2abcos ,再利用基本不等式的性質可得:4≥ab>0,SABC= sin = ab即可得出.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知a,b,c為△ABC的三個內角A,B,C的對邊,向量 =(﹣1, ), =(cosA,sinA).若 ,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A.
B.
C. ,
D. ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從向陽小區(qū)抽取100戶居民進行月用電量調查,為制定階梯電價提供數據,發(fā)現其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標明數據,你認為t=(

A.0.0041
B.0.0042
C.0.0043
D.0.0044

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直角三角形ABC中角A,B,C對邊長分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數).

)當,討論函數的單調性;

)若,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點,是等腰三角形,的中點,上一點.

I)若平面,求

II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的函數為增函數,對任意都有為常數)

(1)判斷為何值時,為奇函數,并證明;

(2)設上的增函數,且,若不等式對任意恒成立,求實數的取值范圍.

(3)若,,的前項和,求正整數,使得對任意均有.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數的解析式可化為y=3cos(2x﹣ );
③圖象關于x=﹣ 對稱;④圖象關于點(﹣ ,0)對稱.
其中正確的是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若在區(qū)間上有且只有一個極值點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案