【題目】(本小題滿(mǎn)分12分)已知圓C過(guò)點(diǎn)P(1,1),且與圓M:關(guān)于直線對(duì)稱(chēng).

(1)求圓C的方程:

(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求最小值;

(3)過(guò)點(diǎn)P作兩條相異直線分別與圓C交與A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP與直線AB是否平行?請(qǐng)說(shuō)明理由

【答案】(1);(2)-4;(3)平行.

【解析】

試題(1)由題意圓心與圓心關(guān)于直線對(duì)稱(chēng);(2)設(shè),由(1)有,,可設(shè),代入可求得的最小值;(3)本題證明用解析法,由于直線PA和直線PB的傾斜角互補(bǔ),設(shè)方程為,則方程為,把它們代入圓的方程求得的坐標(biāo),計(jì)算得,即

試題解析:(1)設(shè)圓心C(a,b),則 解得 a=0 b=0

所以圓C的方程為 , 將點(diǎn)P的坐標(biāo)代人得, 所以圓C的方程為

(2)設(shè)Q(x,y) ,則

所以

所以的最小值為 -4 (可由線性規(guī)劃或三角代換求得)

(3)由題意可知,直線PA和直線PB的斜率存在且互為相反數(shù)

故 可設(shè)PA PB

因?yàn)辄c(diǎn)P的橫坐標(biāo)是 x=1,一定是方程的解 故可得

同理

所以

所以直線OP與直線AB一定平行

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)在(1)的條件下,求證:;

(3)當(dāng)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四們同學(xué)一起去向老師詢(xún)問(wèn)數(shù)學(xué)學(xué)業(yè)水平考試成績(jī)等級(jí). 老師說(shuō):“你們四人中有2人等,1人等,1人等,我現(xiàn)在給甲看乙、丙的成績(jī)等級(jí),給乙看丙的成績(jī)等級(jí),給丙看丁的成績(jī)等級(jí)”.看后甲對(duì)大家說(shuō):“我知道我的成績(jī)等級(jí)了”.根據(jù)以上信息,則( )

A. 甲、乙的成績(jī)等級(jí)相同 B. 丁可以知道四人的成績(jī)等級(jí)

C. 乙、丙的成績(jī)等級(jí)相同 D. 乙可以知道四人的成績(jī)等級(jí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),學(xué)校組織體育社團(tuán),某宿舍有4人積極報(bào)名參加籃球和足球社團(tuán),每人只能從兩個(gè)社團(tuán)中選擇其中一個(gè)社團(tuán),大家約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己參加哪個(gè)社團(tuán),擲出點(diǎn)數(shù)為5或6的人參加籃球社團(tuán),擲出點(diǎn)數(shù)小于5的人參加足球社團(tuán).

(Ⅰ)求這4人中恰有1人參加籃球社團(tuán)的概率;

(Ⅱ)用分別表示這4人中參加籃球社團(tuán)和足球社團(tuán)的人數(shù),記隨機(jī)變量的乘積,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)若數(shù)列的前n項(xiàng)和,求數(shù)列的通項(xiàng)公式.

2)若數(shù)列的前n項(xiàng)和,證明為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,內(nèi)角,的對(duì)邊,滿(mǎn)足

(1)求的大小;

(2)若, ,C角最小,求的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大指出中國(guó)的電動(dòng)汽車(chē)革命早已展開(kāi),通過(guò)以新能源汽車(chē)替代汽/柴油車(chē),中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車(chē)行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車(chē)生產(chǎn)設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本萬(wàn)元,每生產(chǎn)(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.

(1)求出2018年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)

(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),

從以下兩個(gè)命題中任選一個(gè)進(jìn)行證明:

當(dāng)時(shí)函數(shù)恰有一個(gè)零點(diǎn);

當(dāng)時(shí)函數(shù)恰有一個(gè)零點(diǎn);

如圖所示當(dāng)時(shí),的圖象“好像”只有一個(gè)交點(diǎn),但實(shí)際上這兩個(gè)函數(shù)有兩個(gè)交點(diǎn),請(qǐng)證明:當(dāng)時(shí),兩個(gè)交點(diǎn).

若方程恰有4個(gè)實(shí)數(shù)根,請(qǐng)結(jié)合的研究,指出實(shí)數(shù)k的取值范圍不用證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將5名實(shí)習(xí)生分配到三個(gè)班實(shí)習(xí),每班至少1名,則分配方案共有( )

A. 240種 B. 150種 C. 180 D. 60

查看答案和解析>>

同步練習(xí)冊(cè)答案