【題目】某市出租車的現(xiàn)行計價標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價8元收取,超過2 km后的路程按1.9 元/km收取,但超過10 km后的路程需加收50%的返空費(fèi)(即單價為1.9×(1+50%)=2.85(元/km)).
(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請問:他這樣做是否比只乘一輛出租車完成全部行程更省錢?
(現(xiàn)實中要計等待時間且最終付費(fèi)取整數(shù),本題在計算時都不予考慮)

【答案】
(1)解:由題意得,車費(fèi)f(x)關(guān)于路程x的函數(shù)為:

(2)解:只乘一輛車的車費(fèi)為:f(16)=2.85×16-5.3=40.3(元);
換乘2輛車的車費(fèi)為:2f(8)=2×(4.2+1.9×8)=38.8(元).
∵40.3>38.8,∴該乘客換乘比只乘一輛車更省錢
【解析】(1)實際問題中,根據(jù)題意分段求出函數(shù)解析式;
(2)求出兩種情況下的函數(shù)值,用所花費(fèi)用比較得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)y1 ,y2 ,其中a>0,且a≠1,試確定x為何值時,有:
(1)y1=y(tǒng)2;
(2)y1>y2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程x2+ax+2a=0有解;命題q:函數(shù)f(x)= 在R上是單調(diào)函數(shù).
(1)當(dāng)命題q為真命題時,求實數(shù)a的取值范圍;
(2)當(dāng)p為假命題,q為真命題時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)比較下列兩組實數(shù)的大。 ① ﹣1與2﹣ ;②2﹣ ;
(Ⅱ)類比以上結(jié)論,寫出一個更具一般意義的結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有2名男生和3名女生. (Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 的邊 上的高所在直線方程分別為 , ,頂點(diǎn) ,求 邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) 及圓 .
(1)設(shè)過點(diǎn) 的直線 與圓 交于 兩點(diǎn),當(dāng) 時,求以線段 為直徑的圓 的方程;
(2)設(shè)直線 與圓 交于 兩點(diǎn),是否存在實數(shù) ,使得過點(diǎn) 的直線 垂直平分弦 ?若存在,求出實數(shù) 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)若函數(shù) 上是減函數(shù),求實數(shù) 的取值范圍;
(2)是否存在整數(shù) ,使得 的解集恰好是 ,若存在,求出 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

同步練習(xí)冊答案