已知函數f(x)=(a+1)lnx+ax2+1.
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)設a≤-2,證明:對任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.
分析:(1)先求出函數的定義域,然后對函數f(x)進行求導,根據導函數大于0時原函數單調遞增、導函數小于0時原函數單調遞減對a分3種情況進行討論.
(2)先根據a的范圍對函數f(x)的單調性進行判斷,然后根據單調性去絕對值,將問題轉化為證明函數g(x)=f(x)+4x的單調性問題.
解答:解:(Ⅰ)f(x)的定義域為(0,+∞),
f′(x)=+2ax=.
當a≥0時,f′(x)>0,故f(x)在(0,+∞)單調增加;
當a≤-1時,f′(x)<0,故f(x)在(0,+∞)單調減少;
當-1<a<0時,令f′(x)=0,解得x=
.當x∈(0,
)時,f′(x)>0;
x∈(
,+∞)時,f′(x)<0,
故f(x)在(0,
)單調增加,在(
,+∞)單調減少.
(Ⅱ)不妨假設x
1≤x
2.由于a≤-2,故f(x)在(0,+∞)單調遞減.
所以|f(x
1)-f(x
2)|≥4|x
1-x
2|等價于f(x
1)-f(x
2)≥4x
2-4x
1,
即f(x
2)+4x
2≤f(x
1)+4x
1.
令g(x)=f(x)+4x,則
g′(x)=+2ax+4=
.
于是g′(x)≤
=
≤0.
從而g(x)在(0,+∞)單調減少,故g(x
1)≥g(x
2),
即f(x
1)+4x
1≥f(x
2)+4x
2,故對任意x
1,x
2∈(0,+∞),|f(x
1)-f(x
2)|≥4|x
1-x
2|.
點評:本題主要考查函數的單調性與其導函數正負之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.