,,若直線與圓相切,則的取值范
圍是( 。
A.B.
C.D.
D

試題分析:因為直線與圓相切,所以,即,所以,所以的取值范
圍是。
點評:做本題的關鍵是靈活應用基本不等式,注意基本不等式應用的前提條件:一正二定三相等。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知圓C:,直線L:
(1) 證明:無論取什么實數(shù),L與圓恒交于兩點;
(2) 求直線被圓C截得的弦長最小時直線L的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線與圓交于不同的兩點A、B,O是坐標原點,且,則實數(shù)m的取值范圍是             。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

動圓與定圓內切,與定圓外切,A點坐標為(1)求動圓的圓心的軌跡方程和離心率;(2)若軌跡上的兩點滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設圓,過圓心作直線交圓于、兩點,與軸交于點,若恰好為線段的中點,則直線的方程為  .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以兩點為直徑端點的圓的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知動圓過定點,且與直線相切,橢圓的對稱軸為坐標軸,一個焦點為,點在橢圓上.
(1)求動圓圓心的軌跡的方程及橢圓的方程;
(2)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,試求當面積取到最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l:3x+4y-12=0與圓C: (θ為參數(shù))的位置關系是( )
A.相切 B.相離C.相交但直線不過圓心D.直線過圓心

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若點在圓的外部,則實數(shù)的范圍為___________.

查看答案和解析>>

同步練習冊答案