【題目】求證:點(diǎn) P(x0,y0) 到直線Ax+By+C=0的距離為
【答案】證明:設(shè)Q(x,y) 是直線上任意一點(diǎn),則 Ax+By+C=0 .因?yàn)閨PQ|2=(x-x0)2+(y-y0)2, ,由柯西不等式,得
所以 .
當(dāng)且僅當(dāng) 時(shí),取等號(hào),|PQ| 取得最小值 .
因此,點(diǎn) P(x0,y0) 到直線Ax+By+C =0的距離為 .
【解析】本題主要考查了二維形式的柯西不等式,解決問(wèn)題的關(guān)鍵是利用二維形式的柯西不等式 ,取“=”的條件是ad=bc.因此,在解題時(shí),對(duì)照柯西不等式,必須弄清要求的問(wèn)題中相當(dāng)于柯西不等式中的“a , b , c , d”的數(shù)或代數(shù)式,否則一般出錯(cuò).
【考點(diǎn)精析】本題主要考查了二維形式的柯西不等式的相關(guān)知識(shí)點(diǎn),需要掌握二維形式的柯西不等式:當(dāng)且僅當(dāng)時(shí),等號(hào)成立才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex , g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù). (I)函數(shù)h(x)=xf (x),當(dāng)a=l,b=0時(shí),若函數(shù)h(x)與g(x)具有相同的單調(diào)區(qū)間,求m的值;
(II)記F(x)=f(x)﹣g(x).當(dāng)a=2,m=0時(shí),若函數(shù)F(x)在[﹣1,2]上存在兩個(gè)不同的零點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位打字員在兩臺(tái)電腦上各自輸入A,B兩種類(lèi)型的文件的部分文字才能使這兩類(lèi)文件成為成品.已知A文件需要甲輸入0.5小時(shí),乙輸入0.2小時(shí);B文件需要甲輸入0.3小時(shí),乙輸入0.6小時(shí).在一個(gè)工作日中,甲至多只能輸入6小時(shí),乙至多只能輸入8小時(shí),A文件每份的利潤(rùn)為60元,B文件每份的利潤(rùn)為80元,則甲、乙兩位打字員在一個(gè)工作日內(nèi)獲得的最大利潤(rùn)是元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(sinx﹣cosx)2+ sin(2x+ )(x∈R).
(1)求函數(shù)f(x)的遞減區(qū)間;
(2)若f(α)= ,α∈( , ),求cos(2α+ ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù) p 滿足不等式(2p+1)(p+2)<0 ,用反證法證明:關(guān)于 x 的方程x2-2x+5-p2=0 無(wú)實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2010年至2016年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格y(單位:千元/平米)的統(tǒng)計(jì)數(shù)據(jù)如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷(xiāo)售價(jià)格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求y關(guān)于x的線性回歸方程;
(2)利用(Ⅰ)中的回歸方程,分析2010年至2016年該市新開(kāi)樓盤(pán)平均銷(xiāo)售價(jià)格的變化情況,并預(yù)測(cè)該市2018年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格.
附:參考數(shù)據(jù)及公式: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=1,BC=2,∠CBA= ,ABEF為直角梯形,BE∥AF,∠BAF= ,BE=2,AF=3,平面ABCD⊥平面ABEF.
(1)求證:AC⊥平面ABEF;
(2)求平面ABCD與平面DEF所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(a+c)2=b2+3ac
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com