(12分)(I)求函數(shù)圖象上的點(diǎn)處的切線方程;
(Ⅱ)已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍。

(1) (2)

解析試題分析:解:(Ⅰ);          2分
由題意可知切點(diǎn)的橫坐標(biāo)為1,
所以切線的斜率是,               1分
切點(diǎn)縱坐標(biāo)為,故切點(diǎn)的坐標(biāo)是,
所以切線方程為,即.          2分
(II)問題即         1分
1)當(dāng)
  ,所以無解。          (2分)
2)當(dāng)時(shí),
,則, 
  ,所以無解。           (2分)
時(shí),當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增。,
綜上可知                 (2分)
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):根據(jù)導(dǎo)數(shù)求解函數(shù)的單調(diào)性,以及函數(shù) 極值和最值,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)判斷奇偶性, 并求出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),().
(1)求函數(shù)的極值;
(2)已知,函數(shù),判斷并證明的單調(diào)性;
(3)設(shè),試比較,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)若,求曲線處的切線方程;
(2)若恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)曲線在點(diǎn)處的切線斜率為,且,對(duì)一切實(shí)數(shù),不等式恒成立
(1) 求的值;
(2) 求函數(shù)的表達(dá)式;
(3) 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設(shè),函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是二次函數(shù),不等式的解集是,且在點(diǎn)處的切線與直線平行.求的解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

理科(本小題14分)已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對(duì)任意,都有;(Ⅲ)已知正數(shù)滿足求證:當(dāng),時(shí),對(duì)任意大于,且互不相等的實(shí)數(shù),都有

查看答案和解析>>

同步練習(xí)冊(cè)答案