已知函數(shù), 
(1)若曲線在公共點處有相同的切線,求實數(shù)的值;
(2)當時,若曲線在公共點處有相同的切線,求證:點唯一;
(3)若,,且曲線總存在公切線,求正實數(shù)的最小值
(1);(2)詳見解析;(3)正實數(shù)的最小值為1

試題分析:(1)求實數(shù)、的值,因為曲線在公共點處有相同的切線,由導(dǎo)數(shù)的幾何意義可得,,解出即可;(2)當時,若曲線在公共點處有相同的切線,求證:點唯一,可設(shè),由題設(shè)得,,轉(zhuǎn)化為關(guān)于的方程只有一解,進而構(gòu)造函數(shù),轉(zhuǎn)化為函數(shù)只有一個零點,可利用導(dǎo)數(shù)即可證明;(3)設(shè)曲線在點處的切線方程為,則只需使該切線相切即可,也即方程組只有一解即可,所以消,問題轉(zhuǎn)化關(guān)于的方程總有解,分情況借助導(dǎo)數(shù)進行討論即可求得值最小值
試題解析:(1), ∵曲線在公共點處有相同的切線∴ ,  解得,            3分
(2)設(shè),則由題設(shè)有       ①又在點有共同的切線
代入①得     5分
設(shè),則
上單調(diào)遞增,所以 =0最多只有個實根,
從而,結(jié)合(1)可知,滿足題設(shè)的點只能是            7分
(3)當,時,,
曲線在點處的切線方程為,即 
,得  
∵ 曲線總存在公切線,∴ 關(guān)于的方程,
 總有解                    9分
,則,而,顯然不成立,所以     10分
從而,方程可化為  
,則 
∴ 當時,;當時,,即 上單調(diào)遞減,在上單調(diào)遞增 ∴的最小值為,
所以,要使方程有解,只須,即               14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某社區(qū)有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動小時的收費為,在乙家租一張球臺開展活動小時的收費為.試求.
(2)問:小張選擇哪家比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程|2x-1|=b有兩個不相等的實數(shù)根,則b的取值范圍是( 。
A.b>1B.b<1C.0<b<1D.0<b≤1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線x=a(a<0)與函數(shù)y=(
1
3
x,y=(
1
2
)x,y=2x,y=10x
的圖象依次交與A,B,C,D四點,則這四個點從上到下的排列次序是( 。
A.A、B、C、DB.B、C、A、DC.B、A、C、DD.C、A、B、D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意xM(MD),有xlD,且f(xl)≥f(x),則稱函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某學生在復(fù)習指數(shù)函數(shù)的圖象時發(fā)現(xiàn):在y軸左邊, y=3x與y=2x的圖象均以x軸負半軸為漸近線, 當x=0時, 兩圖象交于點(0, 1).這說明在y軸的左邊y=3x與y=2x的圖象從左到右開始時幾乎一樣, 后來y=2x的圖象變化加快使得y=2x與y=3x的圖象逐漸遠離, 而當x經(jīng)過某一值x0以后 y= 3x的圖象變化加快使得y=2x與y=3x的圖象又逐漸接近, 直到x=0時兩圖象交于點(0, 1).那么x0=(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處取得極小值.
(1)求的值;
(2)若處的切線方程為,求證:當時,曲線不可能在直線的下方.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程的解是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,則         .

查看答案和解析>>

同步練習冊答案