【題目】中國象棋中規(guī)定:馬走字,象走.如下圖,在中國象棋的半個(gè)棋盤(的矩形中每個(gè)小方格都是單位正方形)中,若馬在處,可跳到處,也可跳到處,用向量表示馬走了一步.通過探究,你能在圖中畫出馬在處走了一步的所有情況嗎?

【答案】答案見解析.

【解析】每一步不同的走法對應(yīng)一個(gè)不同的以為起點(diǎn)的向量,按照馬走字的規(guī)定,由于向量的起點(diǎn)已經(jīng)確定,只要把向量的終點(diǎn)確定下來,就可以知道有多少個(gè)不同的向量,進(jìn)而知道共有多少個(gè)不同的走法情況.

試題解析:此題中,馬在處有兩條路可走,在處有三條路可走,在處有八條路可走,可謂八面威風(fēng),解題時(shí),應(yīng)做到不重不漏.如下圖,以點(diǎn)為起點(diǎn)作向量(共3個(gè)),以點(diǎn)為起點(diǎn)作向量(共8個(gè)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),點(diǎn)分別在的圖象上

1若函數(shù)處的切線恰好與相切,求的值;

2若點(diǎn)的橫坐標(biāo)均為,記,當(dāng)時(shí),函數(shù)取得極大值,求的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:

1直線EG平面BDD1B1;

2平面EFG平面BDD1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中生上學(xué)使用手機(jī)情況,調(diào)查者進(jìn)行了如下的隨機(jī)調(diào)查:調(diào)查者向被調(diào)查者提出兩個(gè)問題:(1)你的學(xué)號是奇數(shù)嗎?(2)你上學(xué)時(shí)是否經(jīng)常帶手機(jī)?要求被調(diào)查者背對著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一問題,否則就回答第二個(gè)問題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個(gè)問題,只需回答“是”或“不是”,因?yàn)橹挥斜徽{(diào)查者本人知道回答了哪一個(gè)問題,所以都如實(shí)地做了回答.結(jié)果被調(diào)查的800人(學(xué)號從1至800)中有260人回答了“是”.由此可以估計(jì)這800人中經(jīng)常帶手機(jī)上學(xué)的人數(shù)是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園有一塊邊長為2的等邊三角形的地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分, 上, 上.

(1)設(shè), ,請將表示為的函數(shù),并求出該函數(shù)的定義域;

(2)如果是灌溉水管,為節(jié)約成本,希望它最短, 的位置應(yīng)在哪里?如果是參觀線路,則希望它最長, 的位置又應(yīng)在哪里?請予以說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)將函數(shù)的圖像向左平移個(gè)單位后,再將圖像上各點(diǎn)的橫坐標(biāo)伸長到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求的最大值及取得最大值時(shí)的的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某初級中學(xué)有三個(gè)年級,各年級男、女生人數(shù)如下表:

初一年級

初二年級

初三年級

女生

370

z

200

男生

380

370

300

已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.

1求z的值;

2用分層抽樣的方法在初三年級中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任選2名學(xué)生,求至少有1名女生的概率;

3用隨機(jī)抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖像上.

(I)求數(shù)列的首項(xiàng)和通項(xiàng)公式

(II)若數(shù)列滿足,求數(shù)列的前項(xiàng)和;

(III)已知數(shù)列滿足.若對任意,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修41:幾何證明選講

如圖,已知AP是O的切線,P為切點(diǎn),AC是O的割線,與O交于B、C兩點(diǎn),圓心O在PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).

1 證明:A、P、O、M四點(diǎn)共圓;

2OAM+APM的大小

查看答案和解析>>

同步練習(xí)冊答案