【題目】選修4—1:幾何證明選講
如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B、C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(1) 證明:A、P、O、M四點(diǎn)共圓;
(2)求∠OAM+∠APM的大小
【答案】(1)詳見解析 (2) 90°
【解析】
試題分析:(1)證明四點(diǎn)共圓,一般利用對(duì)角互補(bǔ)進(jìn)行證明:根據(jù)相切及垂徑定理得OP⊥AP及OM⊥BC,從而得∠OPA+∠OMA=180°. (2)根據(jù)四點(diǎn)共圓得同弦所對(duì)角相等:∠OAM=∠OPM,因此
∠OPM+∠APM=90°,
試題解析:(1)證明 連接OP,OM,因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.
因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC,
于是∠OPA+∠OMA=180°.
由圓心O在∠PAC的內(nèi)部,可知四邊形APOM的對(duì)角互補(bǔ),所以A、P、O、M四點(diǎn)共圓.
(2)解 由(1)得A、P、O、M四點(diǎn)共圓,
所以∠OAM=∠OPM,
由(1)得OP⊥AP,因?yàn)閳A心O在∠PAC的內(nèi)部,
所以∠OPM+∠APM=90°,
所以∠OAM+∠APM=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)象棋中規(guī)定:馬走“日”字,象走“田”字.如下圖,在中國(guó)象棋的半個(gè)棋盤(的矩形中每個(gè)小方格都是單位正方形)中,若馬在處,可跳到處,也可跳到處,用向量,表示馬走了“一步”.通過(guò)探究,你能在圖中畫出馬在處走了一步的所有情況嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居民顯示可以過(guò)正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過(guò)5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各個(gè)選項(xiàng)中,一定符合上述指標(biāo)的是__________.
①平均數(shù); ②標(biāo)準(zhǔn)差; ③平均數(shù)且標(biāo)準(zhǔn)差;
④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某中學(xué)高一學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:若抽取的學(xué)生數(shù)為,成績(jī)分為(優(yōu)秀)、(良好)、(及格)三個(gè)等級(jí),設(shè), 分別表示數(shù)學(xué)成績(jī)與地理成績(jī).例如:表中地理成績(jī)?yōu)?/span>等級(jí)的共有人,數(shù)學(xué)成績(jī)?yōu)?/span>級(jí)且地理成績(jī)?yōu)?/span>等級(jí)的有8人.已知與均為等級(jí)的頻率是0.07.
(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是,求, 的值;
(2)已知, ,求數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)的人數(shù)比數(shù)學(xué)成績(jī)?yōu)?/span>等級(jí)的人數(shù)多的概率.
人數(shù) | |||
14 | 40 | 10 | |
36 | |||
28 | 8 | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列問(wèn)題中符合調(diào)查問(wèn)卷要求的是( )
A.你們單位有幾個(gè)高個(gè)子?
B.您對(duì)我們廠生產(chǎn)的電視機(jī)滿意嗎?
C.您的體重是多少千克?
D.很多顧客都認(rèn)為該產(chǎn)品的質(zhì)量很好,您不這么認(rèn)為嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-1《幾何證明選講》
已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn)
(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,平面,,,,,,為線段上一點(diǎn).
(Ⅰ)求的值,使得平面;
(Ⅱ)在(Ⅰ)的條件下,求二面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com