某實驗室至少需某種化學藥品10kg,現(xiàn)在市場上該藥品有兩種包裝,一種是每袋3kg,價格為12元;另一種是每袋2kg,價格為10元.但由于儲存的因素,每一種包裝購買的數(shù)量都不能超過5袋,則在滿足需要的條件下,花費最少為 元.
【答案】
分析:設(shè)價格為12元的x袋,價格為10元y袋,花費為Z百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即x,y滿足的約束條件,由約束條件畫出可行域;要求應(yīng)作怎樣的組合投資,可使花費最少,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標函數(shù)看成是一條直線,分析目標函數(shù)Z與直線截距的關(guān)系,進而求出最優(yōu)解.
解答:解:設(shè)價格為12元的x袋,價格為10元y袋,花費為Z百萬元,
則約束條件為:
,(5′)目標函數(shù)為z=12x+10y,(7′)
作出可行域,(11′)
使目標函數(shù)為z=12x+10y取最小值的點(x,y)是
A(2,2)此時z=44(13′)
答:應(yīng)價格為12元的2袋,價格為10元2袋,花費最少為44元.(15′)
故答案為:44.
點評:在解決線性規(guī)劃的應(yīng)用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫出可行域⇒③分析目標函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實問題中.