【題目】如圖,四棱錐中,為的中點(diǎn).
求證:平面.
【答案】證明見(jiàn)解析
【解析】
試題分析:方法一,取PA的中點(diǎn)H,連接EH、DH。證明四邊形DCEH是平行四邊形,可得CE∥DH,根據(jù)線(xiàn)面平行的判定定理可得平面.
方法二:取AB的中點(diǎn)F,連接CF、EF,證明平面CEF∥平面PAD,可得平面.
試題解析:
方法一: 如圖所示,取PA的中點(diǎn)H,連EH、DH.
因?yàn)?/span>E為PB的中點(diǎn),
所以EH∥AB,。
又AB∥CD,,
所以EH∥CD,EH=CD.
因此四邊形DCEH是平行四邊形,
所以CE∥DH.
又DH平面PAD,CE平面PAD,
因此CE∥平面PAD.
方法二:如圖所示,取AB的中點(diǎn)F,連CF、EF,
所以,又,
所以AF=CD。
又AF∥CD,
所以四邊形AFCD為平行四邊形,
因此CF∥AD。
又CF平面PAD,AD平面PAD。
所以CF∥平面PAD。
因?yàn)?/span>E,F分別為PB,AB的中點(diǎn),
所以EF∥PA。
又EF平面PAD,PA平面PAD,
所以EF∥平面PAD。
因?yàn)?/span>CF ∩ EF=F,
所以平面CEF∥平面PAD。
又CE平面CEF,
所以CE∥平面PAD。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,O為AC的中點(diǎn),平面M為PD的中點(diǎn)。
(1)證明平面.
(2)證明平面 .
(3)求三棱錐P-MAC體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,一動(dòng)直線(xiàn)l過(guò)與圓相交于.兩點(diǎn),是中點(diǎn),l與直線(xiàn)m:相交于.
(1)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心;
(2)當(dāng)時(shí),求直線(xiàn)l的方程;
(3)探索是否與直線(xiàn)l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線(xiàn)4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若集合含有個(gè)元素,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】佳木斯一中從高二年級(jí)甲、乙兩個(gè)班中各選出7名學(xué)生參加2017年全國(guó)高中數(shù)學(xué)聯(lián)賽(黑龍江初賽),他們?nèi)〉玫某煽?jī)(滿(mǎn)分140分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的中位數(shù)是81,乙班學(xué)生成績(jī)的平均數(shù)是86,若正實(shí)數(shù)、滿(mǎn)足, , 成等差數(shù)列且, , 成等比數(shù)列,則的最小值為( )
A. B. 2 C. D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在高為2的梯形中, , , ,過(guò)、分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。
(1)若,證明: ;
(2)若,證明: ;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程 ;
(2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)該小組所得線(xiàn)性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com