【題目】已知函數(shù),下列結(jié)論中正確的序號是__________.

的圖象關(guān)于點中心對稱,

的圖象關(guān)于對稱,

的最大值為,

既是奇函數(shù),又是周期函數(shù).

【答案】①②④

【解析】

利用函數(shù)圖象關(guān)于點 對稱的充分必要條件:和函數(shù)圖象關(guān)于直線對稱的充分必要條件:,結(jié)合三角函數(shù)的誘導公式和奇偶性,判定①②正確;利用二倍角公式和同角三角函數(shù)的關(guān)系將)化為只含有的表達式,利用換元法并構(gòu)造函數(shù),使用導數(shù)研究單調(diào)性,并求得最值,進而判定③錯誤;利用奇函數(shù)的定義和周期函數(shù)的定義,結(jié)合正余弦函數(shù)的周期性可以判定④正確.

,故①正確;

,故②正確;

,其中.

,,則,令,解得,

列表如下:

-1

1

-

-

0

+

0

-

-

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

0


=,故=,故③錯誤;

,故為奇函數(shù),

,故是周期函數(shù),

故④正確.

故答案為:①②④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】【選修4-4:坐標系與參數(shù)方程】

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若點的坐標為,直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】哈爾濱市第三中學校響應(yīng)教育部門疫情期間“停課不停學”的號召,實施網(wǎng)絡(luò)授課,為檢驗學生上網(wǎng)課的效果,高三學年進行了一次網(wǎng)絡(luò)模擬考試.全學年共人,現(xiàn)從中抽取了人的數(shù)學成績,繪制成頻率分布直方圖(如下圖所示).已知這人中分數(shù)段的人數(shù)比分數(shù)段的人數(shù)多.

1)根據(jù)頻率分布直方圖,求、的值,并估計抽取的名同學數(shù)學成績的中位數(shù);

2)若學年打算給數(shù)學成績不低于分的同學頒發(fā)“網(wǎng)絡(luò)課堂學習優(yōu)秀獎”,將這名同學數(shù)學成績的樣本頻率視為概率.

i)估計全學年的獲獎人數(shù);

ii)若從全學年隨機選取人,求所選人中至少有人獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為改善環(huán)境,節(jié)約資源,我國自2019年起在全國地級及以上城市全面啟動生活垃圾分類,垃圾分類已成為一種潮流.某市一小區(qū)的主管部門為了解居民對垃圾分類的認知是否與其受教育程度有關(guān),對該小區(qū)居民進行了隨機抽樣調(diào)查,得到如下統(tǒng)計數(shù)據(jù)的列聯(lián)表:

知道如何對垃圾進行分類

不知道如何對垃圾進行分類

合計

未受過高等教育

10

受過高等教育

合計

50

1)求列聯(lián)表中的,,,,的值,并估計該小區(qū)受過高等教育的居民知道如何對垃圾進行分類的概率;

2)根據(jù)列聯(lián)表判斷能否有的把握認為該小區(qū)居民對垃圾分類的認知與其受教育程度有關(guān)?

參考數(shù)據(jù)及公式:

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,都是邊長為2的等邊三角形,為等腰直角三角形,,.

1)證明:

2)若的中點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們可從這個商標中抽象出一個如圖靠背而坐的兩條優(yōu)美的曲線,下列函數(shù)中大致可“完美”局部表達這對曲線的函數(shù)是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

1)求證:PC⊥BC

2)求點A到平面PBC的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角ABC中,a2,_______,求ABC的周長l的范圍.

在①(﹣cos,sin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個條件中任選一個,補充在上面問題中并對其進行求解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f x=lnxgx=ex

1)若函數(shù)φ x = f x)-,求函數(shù)φ x)的單調(diào)增區(qū)間;

2)設(shè)直線l為函數(shù)的圖象上一點Ax0,f x0))處的切線.證明:在區(qū)間(1+∞)上存在唯一的x0,使得直線l與曲線y=gx)相切.

查看答案和解析>>

同步練習冊答案