設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.
解:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點, 所以解得所以橢圓E的方程為 (2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為, 解方程組得,即, 則△=,即
要使,需使,即,所以 , 所以又, 所以,所以,即或, 因為直線為圓心在原點的圓的一條切線, 所以圓的半徑為,,, 所求的圓為,此時圓的切線都滿足或, 而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為或滿足, 綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且. 因為, 所以,
, 、佼(dāng)時 因為所以, 所以, 所以當(dāng)且僅當(dāng)時取“=”. 、時,. 、郛(dāng)AB的斜率不存在時,兩個交點為或, 所以此時, 綜上,|AB|的取值范圍為.即: |
科目:高中數(shù)學(xué) 來源:河南省衛(wèi)輝市第一中學(xué)2012屆高三4月考試數(shù)學(xué)理科試題 題型:044
設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且⊥?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省衛(wèi)輝市第一中學(xué)2012屆高三4月考試數(shù)學(xué)文科試題 題型:044
設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且⊥?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年安徽省阜陽市高三質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com