4.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),則m=-1,f(-log35)的值為-4.

分析 由題設(shè)條件可先由函數(shù)在R上是奇函數(shù)求出參數(shù)m的值,求函數(shù)函數(shù)的解板式,將x=-log35代入解析式即可求得所求的函數(shù)值.

解答 解:由題意,f(x)是定義在R上的奇函數(shù),
當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),
∴f(0)=30+m=0,解得m=-1,
故有x≥0時(shí)f(x)=3x-1,
∴f(-log35)=-f(log35)=-(${3}^{lo{g}_{3}5}$-1)=-(5-1)=-4,
故答案為:-1,-4.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性質(zhì),解題的關(guān)鍵是利用f(0)=0求出參數(shù)m的值,再利用性質(zhì)轉(zhuǎn)化求值,本題考查了轉(zhuǎn)化的思想,方程的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)若函數(shù)h(x)=f(x+t)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱,且t∈(0,$\frac{π}{2}$),求t的值;
(2)若銳角△ABC中,角A滿足h(A)=1,求($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)在(0,+∞)上是減函數(shù)的是(  )
A.y=x2B.y=-x2C.y=-2x2+3x-1D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若全集U={0,1,2,3}且∁UA={2},則集合A為( 。
A.A={0,1}B.A={0,1,3}C.A={0,1,2,3}D.A={1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,現(xiàn)將△ABD沿BD折起后使AC=$\sqrt{3}$,在四面體ABCD四個(gè)面中兩兩構(gòu)成直二面角的個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知直三棱柱ABC-A1B1C1的各棱長都是4,E是BC的中點(diǎn),點(diǎn)F在側(cè)棱CC1上,且CF=1,求證:EF⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求y=3-4sinx-sin2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.各項(xiàng)為正數(shù)的等比數(shù)列{an}中,a1+a4=27,Sa6=189,則q=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案