7.函數(shù)y=3tan(ωx$+\frac{π}{6}$)的最小正周期為$\frac{π}{2}$,則ω=±2.

分析 根據(jù)正確函數(shù)的周期公式進(jìn)行求解即可.

解答 解:∵函數(shù)y=3tan(ωx$+\frac{π}{6}$)的最小正周期為$\frac{π}{2}$,
∴T=$\frac{π}{|ω|}$=$\frac{π}{2}$,
即|ω|=2,則ω=±2,
故答案為:±2

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期的計(jì)算,根據(jù)正切函數(shù)的周期公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=ax+xlnx(a∈R).
(Ⅰ)曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為0,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)<x2在(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{3^{-x}},}&{x≤1}\\{{{log}_{27}}x,}&{x>1}\end{array}}$,則滿足方程f(x)=$\frac{1}{3}$的x的值為1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={x|ax2+2x+1=0,a∈R},有且只有一個(gè)真子集,則a的取值集合為{0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=(x+1)(x2-6x)+9x+9在其定義域內(nèi)( 。
A.沒有零點(diǎn)B.有且僅有一個(gè)零點(diǎn)
C.有且僅有兩個(gè)D.有且僅有三個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐A-BCD的頂點(diǎn)都在球O的球面上,AB⊥平面BCD,∠BCD=90°,AB=BC=CD=2,則球O的表面積是12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+1,x<1}\\{-x+3,x≥1}\end{array}}\right.$,則$f[{f({\frac{5}{2}})}]$等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的通項(xiàng)公式是an=(-1)nn,則a1+a2+a3+…+a10=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若x0∈R滿足f(x0)=x0,則稱x0為f(x)的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=x2+ax+a沒有不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)=-lnx+3的不動(dòng)點(diǎn)x0∈[n,n+1],n∈Z,求n的值;
(3)若函數(shù)f(x)=log2(4x+a•2x+a+1)有不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案