△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且ccosB+bcosC=4acosA.
(1)求cosA的值;
(2)若△ABC的面積為
15
,求
AB
AC
的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,解三角形,平面向量及應(yīng)用
分析:(1)可由正弦定理,結(jié)合誘導(dǎo)公式,將原式化簡(jiǎn),即可得到cosA;
(2)由同角的平方關(guān)系,得到sinA,再由面積公式,即可得到bc=8,再由數(shù)量積的定義即可得到結(jié)果.
解答: 解:(1)由于ccosB+bcosC=4acosA,
則由正弦定理,可得sinCcosB+sinBcosC=4sinAcosA,
即有sin(B+C)=4sin(B+C)cosA,
則cosA=
1
4
;
(2)由于cosA=
1
4
,則sinA=
1-
1
16
=
15
4
,
又S=
1
2
bcsinA=
15

則bc=8,
則有
AB
AC
=cbcosA=8×
1
4
=2.
點(diǎn)評(píng):本題考查平面向量及運(yùn)用,考查平面向量的數(shù)量積的定義,同時(shí)考查正弦定理和誘導(dǎo)公式及同角公式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+2,
(Ⅰ)若f(x)在(-∞, 
1
2
]
是減函數(shù),在[
1
2
, +∞)
是增函數(shù),求實(shí)數(shù)a的值;
(Ⅱ)求實(shí)數(shù)a的取值范圍,使f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),并指出相應(yīng)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足2an+1=an+an+2(n∈N*),且a1=1,a2=
3
2
,則a99=( 。
A、49B、50C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我國(guó)是水資源匱乏的國(guó)家,為鼓勵(lì)節(jié)約用水,某市打算出臺(tái)一項(xiàng)水費(fèi)政策措施.規(guī)定:每季度每人用水量不超過(guò)5噸時(shí),每噸水費(fèi)收基本價(jià)1.3元;若超過(guò)5噸而不超過(guò)6噸時(shí),超過(guò)部分的水費(fèi)按基本價(jià)3倍收取;若超過(guò)6噸而不超過(guò)7噸時(shí),超過(guò)部分的水費(fèi)按基本價(jià)5倍收。橙吮炯径葘(shí)際用水量為x(0≤x≤7)噸,應(yīng)交水費(fèi)為f(x)元.
(Ⅰ)求f(4),f(5.5),f(6.5)的值;
(Ⅱ)試求出函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2+2x-3(x>0)的單調(diào)增區(qū)間是( 。
A、(0,+∞)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2asinxcosx-2acos2x+2a.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)a<0時(shí),f(x)在[0,
π
2
]上的最小值為-2-
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M={x|0≤x≤2},N={y|0≤y≤3},給出下列四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從標(biāo)有1,2,3,…,7的7個(gè)小球中取出一個(gè)球,記下它上面的數(shù)字,放回后再取出一個(gè)球,記下它上面的數(shù)字,然后把兩球上的數(shù)字相加,求取出兩球上的數(shù)字之和大于11或者能被4整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩平行直線x+y-
2
=0與x+y+3
2
=0的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案