(2013•黃埔區(qū)一模)已知F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點,O是雙曲線C的中心,直線y=
m
x
是雙曲線C的一條漸近線.以線段OF為邊作正三角形MOF,若點M在雙曲線C上,則m的值為
3+2
3
3+2
3
分析:依題意,m=
b2
a2
,M(
1
2
c,
3
2
c),將M點的坐標代入雙曲線方程可得到關于m的方程,解之即可.
解答:解:∵F(c,0)是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,直線y=
m
x
是雙曲線C的一條漸近線,
又雙曲線C的一條漸近線為y=
b
a
x,
∴m=
b2
a2
,
又點M在雙曲線C上,△MOF為正三角形,
∴M(
1
2
c,
3
2
c),
(
1
2
c)
2
a2
-
(
3
2
c)
2
b2
=1,又c2=a2+b2,
a2+b2
4a2
-
3(a2+b2)
4b2
=1,
1
4
+
1
4
m-
3
4
-
3
4m
=1,
∴m2-6m-3=0,又m>0,
∴m=3+2
3

故答案為:3+2
3
點評:本題考查雙曲線的簡單性質,考查其漸近線方程,考查代入法與解方程的能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)已知tanα=
1
2
,tan(β-α)=-
1
3
,則tan(β-2α)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)已知命題“若f(x)=m2x2,g(x)=mx2-2m,則集合{x|f(x)<g(x),
12
≤x≤1}=∅
”是假命題,則實數(shù)m的取值范圍是
(-7,0)
(-7,0)

查看答案和解析>>

同步練習冊答案