如圖,貨輪在海上B處,以50海里/時(shí)的速度沿方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為155o的方向航行,為了確定船位,在B點(diǎn)處觀測(cè)到燈塔A的方位角為125o.半小時(shí)后,貨輪到達(dá)C點(diǎn)處,觀測(cè)到燈塔A的方位角為80o.求此時(shí)貨輪與燈塔之間的距離(答案保留最簡(jiǎn)根號(hào)).  

解析試題分析:此類問題需要確定所求的量所在的三角形,然后分析已知條件選擇正弦或者余弦定理進(jìn)行求解,注意有時(shí)需要正余弦定理同時(shí)應(yīng)用。因?yàn)锳C在中,所以在能求出三個(gè)內(nèi)角,以及邊長BC,然后在應(yīng)用正弦定理即可求出船與燈塔的距離.
中,,
,BC=25,由正弦定理可知,
答:船與燈塔間的距離海里.
考點(diǎn):正弦定理在實(shí)際問題用的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,已知,,,求B及S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且.
(1)確定角C的大。
(2)若c=,且△ABC的面積為,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角,所對(duì)的邊分別為,,,已知.
(1)求證:,,成等比數(shù)列;
(2)若,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△中,角、的對(duì)邊分別為、,且.
(1)求;
(2)若,且=,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角,,所對(duì)的邊分別為,已知
(1)求角的大。
(2)已知的面積為6,求邊長的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
如圖,某公司要在兩地連線上的定點(diǎn)處建造廣告牌,其中為頂端,長35米,長80米,設(shè)在同一水平面上,從的仰角分別為.

(1)設(shè)計(jì)中是鉛垂方向,若要求,問的長至多為多少(結(jié)果精確到0.01米)?
(2)施工完成后.與鉛垂方向有偏差,現(xiàn)在實(shí)測(cè)得的長(結(jié)果精確到0.01米)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時(shí)間與輪船相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì), 可以使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案