【題目】已知函數(shù),,,且
(1)若函數(shù)在處取得極值,試求函數(shù)的解析式及單調(diào)區(qū)間;
(2)設(shè),為的導(dǎo)函數(shù),若存在,使成立,求的取值范圍.
【答案】(1)函數(shù)的解析式為,定義域?yàn)?/span>;
單調(diào)增區(qū)間為,和,,單調(diào)減區(qū)間為和;(2).
【解析】
(1)求導(dǎo)后根據(jù)在處取得極值可得,再求解即可得,求導(dǎo)分析導(dǎo)函數(shù)的零點(diǎn)以及正負(fù)區(qū)間,進(jìn)而得到原函數(shù)單調(diào)區(qū)間即可.
(2)根據(jù)題意可得存在為的根,再化簡(jiǎn)可得,再求導(dǎo)分析的值域,進(jìn)而求得的取值范圍即可.
解;(1)由題意,
,
由函數(shù)在處取得極值,得,即,解得,
則函數(shù)的解析式為,定義域?yàn)?/span>,
,
又對(duì)恒成立,
令則有,解得,且,即或;
同理令可解得或;
綜上,函數(shù)的單調(diào)增區(qū)間為,和,,單調(diào)減區(qū)間為和.
(2)由題意,
則,
,
由條件存在,使成立得,對(duì)成立,
又
對(duì)成立,
化簡(jiǎn)得,令,則問(wèn)題轉(zhuǎn)化為求在區(qū)間上的值域,
求導(dǎo)得,
令,為二次函數(shù),圖象開(kāi)口向上,△,則,又,
則,在區(qū)間上單調(diào)遞增,值域?yàn)?/span>,
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù),且).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn)P的極坐標(biāo)為,Q為曲線(xiàn)上的動(dòng)點(diǎn),求的中點(diǎn)M到曲線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在處的切線(xiàn)方程為,求實(shí)數(shù)的值;
(2)證明:當(dāng)時(shí),在上有兩個(gè)極值點(diǎn);
(3)設(shè),若在上是單調(diào)減函數(shù)(為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn) 的兩條漸近線(xiàn)與拋物線(xiàn)的準(zhǔn)線(xiàn)分別交于,兩點(diǎn).若雙曲線(xiàn)的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線(xiàn)的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線(xiàn)l的參數(shù)方程為(t為參數(shù)),圓C的極坐標(biāo)方程為
(1)求直線(xiàn)l和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)在圓C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某民航部門(mén)統(tǒng)計(jì)的2019年春運(yùn)期間12個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述不正確的是( )
A. 同去年相比,深圳的變化幅度最小且廈門(mén)的平均價(jià)格有所上升
B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高
C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面為矩形,平面平面,.
(1)證明:平面;
(2)若,為棱的中點(diǎn),,,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com