設(shè)函數(shù)f(x)=x2+b ln(x+1),其中b≠0.

(Ⅰ)當b>時,判斷函數(shù)f(x)在定義域上的單調(diào)性;

(Ⅱ)求函數(shù)f(x)的極值點;

(Ⅲ)證明對任意的正整數(shù)n,不等式ln)都成立.

(I) 函數(shù)的定義域為.

,

,則上遞增,在上遞減,

.

時,,

上恒成立.

即當時,函數(shù)在定義域上單調(diào)遞增。

(II)分以下幾種情形討論:

(1)由(I)知當時函數(shù)無極值點.

(2)當時,,

時,

時,

時,函數(shù)上無極值點。

(3)當時,解得兩個不同解,.

時,,

此時上有唯一的極小值點.

時,

都大于0 ,上小于0 ,

此時有一個極大值點和一個極小值點.

綜上可知,時,上有唯一的極小值點

時,有一個極大值點和一個極小值點;

時,函數(shù)上無極值點。

(III) 當時,

上恒正,

上單調(diào)遞增,當時,恒有.

即當時,有,

對任意正整數(shù),取

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

當p1,p2,…,pn均為正數(shù)時,稱
n
p1+p2+…+pn
為p1,p2,…,pn的“均倒數(shù)”.已知數(shù)列{an}的各項均為正數(shù),且其前n項的“均倒數(shù)”為
1
2n+1

(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=
an
2n+1
(n∈N*),試比較cn+1與cn的大;
(3)設(shè)函數(shù)f(x)=-x2+4x-
an
2n+1
,是否存在最大的實數(shù)λ,使當x≤λ時,對于一切正整數(shù)n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式; 
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
(3)若方程f(x)=k有兩個不等的實數(shù)根,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對邊長分別是a,b,c,設(shè)函數(shù)f(x)=x2+bx-
1
4
為偶函數(shù),且f(cos
B
2
)=0

(1)求角B的大。
(2)若△ABC的面積為
3
4
,其外接圓的半徑為
2
3
3
,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值為an,最大值為bn,記cn=(1-an)(1-bn
則數(shù)列{cn}是
常數(shù)
常數(shù)
數(shù)列.(填等比、等差、常數(shù)或其他沒有規(guī)律)

查看答案和解析>>

同步練習冊答案