12.已知全集I={0,1,2,3},集合A={1,2},B={2,3},則A∪(CIB)=(  )
A.{1}B.{2,3}C.{0,1,2}D.{0,2,3}

分析 直接由全集I,集合B求出CIB,則A并CIB的答案可求.

解答 解;由I={0,1,2,3},A={1,2},B={2,3},
則CIB={0,1}.
∴A∪(CIB)={1,2}∪{0,1}={0,1,2}.
故選:C.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,一條準(zhǔn)線方程為x=2.過橢圓的上頂點(diǎn)A作一條與x軸、y軸都不垂直的直線交橢圓于另一點(diǎn)P,P關(guān)于x軸的對(duì)稱點(diǎn)為Q.
(1)求橢圓的方程;
(2)若直線AP,AQ與x軸交點(diǎn)的橫坐標(biāo)分別為m,n,求證:mn為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函數(shù),則a的取值范圍是( 。
A.-4≤a<0B.a≤-2C.-4≤a≤-2D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“若x>0,則${2^{3x-{x^2}}}<4$”的逆否命題為若${2^{3x-{x^2}}}≥4$,則x≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(2,1),Q(-2,-2),過點(diǎn)(0,5)的直線l與線段PQ有公共點(diǎn),則直線l的斜率k的取值范圍是k≤-2或k≥$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.正方形ABCD的邊長(zhǎng)為12,PA⊥平面ABCD,且PA=12,則點(diǎn)P到BD的距離為( 。
A.$6\sqrt{6}$B.6$\sqrt{3}$C.$\sqrt{2}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的定義域:
(1)y=$\frac{\sqrt{x-2}}{x+1}$•$\sqrt{x+5}$;      
(2)y=$\frac{\sqrt{x-3}}{|x|-5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$y={log_{\frac{1}{4}}}({{x^2}-4x-5})$的單調(diào)增區(qū)間是(-∞,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案