【題目】甲、乙、丙三位同學進行羽毛球比賽,約定賽制如下:累計負兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進行下一場比賽,負者下一場輪空,直至有一人被淘汰;當一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結束.經抽簽,甲、乙首先比賽,丙輪空.設每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進行第五場比賽的概率;
(3)求丙最終獲勝的概率.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)獨立事件的概率乘法公式可求得事件“甲連勝四場”的概率;
(2)計算出四局以內結束比賽的概率,然后利用對立事件的概率公式可求得所求事件的概率;
(3)列舉出甲贏的基本事件,結合獨立事件的概率乘法公式計算出甲贏的概率,由對稱性可知乙贏的概率和甲贏的概率相等,再利用對立事件的概率可求得丙贏的概率.
(1)記事件甲連勝四場,則;
(2)記事件為甲輸,事件為乙輸,事件為丙輸,
則四局內結束比賽的概率為
,
所以,需要進行第五場比賽的概率為;
(3)記事件為甲輸,事件為乙輸,事件為丙輸,
記事件甲贏,記事件丙贏,
則甲贏的基本事件包括:、、、
、、、、,
所以,甲贏的概率為.
由對稱性可知,乙贏的概率和甲贏的概率相等,
所以丙贏的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,由經過伸縮變換得到曲線,以原點為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程以及曲線的直角坐標方程;
(2)若直線的極坐標方程為,與曲線、曲線在第一象限交于、,且,點的極坐標為,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,且圓過橢圓的上,下頂點.
(1)求橢圓的方程.
(2)若直線的斜率為,且直線交橢圓于、兩點,點關于點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且其離心率為,過坐標原點作兩條互相垂直的射線與橢圓分別相交于,兩點.
(1)求橢圓的方程;
(2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠接受了一項加工業(yè)務,加工出來的產品(單位:件)按標準分為A,B,C,D四個等級.加工業(yè)務約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業(yè)務.甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業(yè)務,在兩個分廠各試加工了100件這種產品,并統(tǒng)計了這些產品的等級,整理如下:
甲分廠產品等級的頻數(shù)分布表
等級 | A | B | C | D |
頻數(shù) | 40 | 20 | 20 | 20 |
乙分廠產品等級的頻數(shù)分布表
等級 | A | B | C | D |
頻數(shù) | 28 | 17 | 34 | 21 |
(1)分別估計甲、乙兩分廠加工出來的一件產品為A級品的概率;
(2)分別求甲、乙兩分廠加工出來的100件產品的平均利潤,以平均利潤為依據(jù),廠家應選哪個分廠承接加工業(yè)務?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某沙漠地區(qū)經過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區(qū),調查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得,,,,.
(1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.
附:相關系數(shù)r=,≈1.414.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1:(a>b>0)的右焦點F與拋物線C2的焦點重合,C1的中心與C2的頂點重合.過F且與x軸垂直的直線交C1于A,B兩點,交C2于C,D兩點,且|CD|=|AB|.
(1)求C1的離心率;
(2)設M是C1與C2的公共點,若|MF|=5,求C1與C2的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(理)某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內,發(fā)布成績使用等級制各等級劃分標準見下表,規(guī)定:三級為合格等級,為不合格等級.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 |
為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.,
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,若在該校高一學生任選3人,求至少有1人成績是合格等級的概率;
(3)在選取的樣本中,從兩個等級的學生中隨機抽取了3名學生進行調研,記表示所抽取的名學生中為等級的學生人數(shù),求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,,
(1)求在處的切線的一般式方程;
(2)請判斷與的圖像有幾個交點?
(3)設為函數(shù)的極值點,為與的圖像一個交點的橫坐標,且,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com