分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{3x-2y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-2y+1=0}\\{3x-y-2=0}\end{array}\right.$,解得A(1,1),
化目標函數(shù)z=3x+y為y=-3x+z,
由圖可知,當直線y=-3x+z過A時,直線在y軸上的截距最小,z有最小值為3×1+1=4.
故答案為:4.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,使得x2-1<0的否定是:?x∈R,均有x2-1>0 | |
B. | 若x=3,則x2-2x-3=0的否命題是:若x≠3,則x2-2x-3≠0 | |
C. | 已知a,b∈R,則b≥0是(a+1)2+b≥0成立的必要不充分條件 | |
D. | 若cosx=cosy,則x=y的逆否命題是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,+∞) | B. | (-∞,-$\frac{1}{2}$] | C. | (-1,$\frac{1}{2}$] | D. | [1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com