如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.
(1)求證:AB⊥平面BCE;
(2)求三棱錐C ADE體積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖甲,是邊長為6的等邊三角形,分別為靠近的三等分點,點為邊邊的中點,線段交線段于點.將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.
(1)求證:平面
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖(1)所示,⊙O的直徑AB=4,點C,D為⊙O上兩點,且∠CAB=45°,∠DAB=60°,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖(2)所示).
(1)求證:OF∥平面ACD;
(2)在上是否存在點G,使得FG∥平面ACD?若存在,試指出點G的位置,并求點G到平面ACD的距離;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,和都是以為斜邊的等腰直角三角形,分別是的中點.
(1)證明:平面//平面;
(2)證明:;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的體積;
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)求三棱錐D-B1C1C的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請您設(shè)計一個帳篷,它下部的形狀是高為1m正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示)。試問當(dāng)帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面是菱形,,,是的中點,點在側(cè)棱上.
(1)求證:⊥平面;
(2)若是的中點,求證://平面;
(3)若,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .
(1) 當(dāng)x=2時,求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當(dāng)f(x)取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com