【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)上的最小值;

2)若,求證:

【答案】12)證明見(jiàn)解析

【解析】

1)由,對(duì)其求導(dǎo),解對(duì)應(yīng)的不等式,判斷單調(diào)性,即可得出最值;

2)先對(duì)函數(shù)求導(dǎo),得到,根據(jù),判斷函數(shù)的單調(diào)性,求出最小值,再由導(dǎo)數(shù)的方法研究最小值的范圍,即可證明結(jié)論成立.

1)當(dāng)時(shí),由,得,

當(dāng)時(shí),,上單調(diào)遞減;

當(dāng)時(shí),,上單調(diào)遞增,

2)由題意,函數(shù)的定義域?yàn)?/span>,,

,,則,設(shè),則,

易知上單調(diào)遞增,

,,,所以存在唯一的,使,

當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,

,

當(dāng)時(shí),,即上無(wú)零點(diǎn),

∴存在唯一的,使,即

,∴,則

當(dāng)時(shí),,即,單調(diào)遞減;

當(dāng)時(shí),,即,單調(diào)遞增.

,

,則上單調(diào)遞減,

,又,從而

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:為自然對(duì)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的零點(diǎn);

2)當(dāng)時(shí),求證:在區(qū)間上單調(diào)遞減;

3)若對(duì)任意的正實(shí)數(shù),總存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點(diǎn),,,分別是以為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以為折痕折起使得重合,得到一個(gè)四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時(shí),該四棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是橢圓上的兩點(diǎn),線(xiàn)段的中點(diǎn)在直線(xiàn).

1)當(dāng)直線(xiàn)的斜率存在時(shí),求實(shí)數(shù)的取值范圍;

2)設(shè)是橢圓的左焦點(diǎn),若橢圓上存在一點(diǎn),使,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB2,AD1.將矩形沿對(duì)角線(xiàn)BD折起,使A移到點(diǎn)P,P在平面BCD上的投影O恰好落在CD邊上.

1)證明:DP⊥平面BCP;

2)求點(diǎn)O到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年8月8日是我國(guó)第十個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來(lái)。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計(jì)該小區(qū)年齡不超過(guò)80歲的成年人人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩品牌計(jì)劃入駐某商場(chǎng),該商場(chǎng)批準(zhǔn)兩個(gè)品牌先進(jìn)場(chǎng)試銷(xiāo)天。兩品牌提供的返利方案如下:甲品牌無(wú)固定返利,賣(mài)出件以?xún)?nèi)(含件)的產(chǎn)品,每件產(chǎn)品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每賣(mài)出一件產(chǎn)品再返利元。經(jīng)統(tǒng)計(jì),兩家品牌在試銷(xiāo)期間的銷(xiāo)售件數(shù)的莖葉圖如下:

(Ⅰ)現(xiàn)從乙品牌試銷(xiāo)的天中隨機(jī)抽取天,求這天的銷(xiāo)售量中至少有一天低于的概率.

(Ⅱ)若將頻率視作概率,回答以下問(wèn)題:

①記甲品牌的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;

②商場(chǎng)擬在甲、乙兩品牌中選擇一個(gè)長(zhǎng)期銷(xiāo)售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面向量,滿(mǎn)足:,的夾角為,||5,的夾角為,||3,則的最大值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案