分析 (1)由三角函數(shù)公式化簡可得f(x)=cos4x+1,由周期公式可得;
(2)由函數(shù)圖象變換和三角函數(shù)公式可得h(x)=$\sqrt{2}$cos(4x+$\frac{π}{4}$)+2,由x的范圍可得最小值.
解答 解:(1)由三角函數(shù)公式化簡可得f(x)=2-8sin2x•cos2x
=2-2(2sinxcosx)2=2-2sin22x=2-(1-cos4x)=cos4x+1,
∴函數(shù)y=f(x)的周期T=$\frac{2π}{4}$=$\frac{π}{2}$;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{8}$個(gè)單位,得函數(shù)y=g(x)的圖象,
∴g(x)=cos4(x+$\frac{π}{8}$)+1=cos(4x+$\frac{π}{2}$)+1=-sin4x+1
∴h(x)=f(x)+g(x)=cos4x+1-sin4x+1=$\sqrt{2}$cos(4x+$\frac{π}{4}$)+2
∵x∈[0,$\frac{π}{4}$],∴4x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],∴cos(4x+$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
∴當(dāng)cos(4x+$\frac{π}{4}$)=-1時(shí),函數(shù)h(x)取最小值2-$\sqrt{2}$
點(diǎn)評(píng) 本題考查三角函數(shù)恒等變換,涉及函數(shù)圖象變換和三角函數(shù)的周期性和最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3種 | B. | 4種 | C. | 5種 | D. | 6種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若f(x1)=f(x2),則x1-x2=kπ,k∈Z | |
B. | f(x)的圖象關(guān)于點(diǎn)($-\frac{3}{8}π$,0)對(duì)稱 | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5}{8}π$對(duì)稱 | |
D. | f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com