精英家教網 > 高中數學 > 題目詳情
點P(3,0)是圓x2+y2-8x-2y+12=0內一點,過點P的弦中最短的弦所在直線方程是( 。
分析:把圓的方程化為標準方程,找出圓心A的坐標,由題意可知:過P的弦中,最長的弦為圓A的直徑,最短的弦為與直徑AP垂直的弦,故由A和P的坐標寫出直線AP的兩點式方程,整理后得到直線AP的斜率,根據兩直線垂直時斜率的乘積為-1求出最短弦所在直線的斜率,由P和求出的斜率寫出所求直線的方程即可.
解答:解:把圓的方程化為標準方程得:(x-4)2+(y-1)2=5,
∴圓心A的坐標為(4,1),
由題意可知:過P最長的弦是圓的直徑,且P(3,0),
此時直線AP的方程的斜率為
4-3
1-0
=1,
又過P最短弦所在直線與直線AP垂直
∴過P最短弦所在直線的斜率k=-1,
則所求直線的方程為y=-1(x-3),即x+y-3=0.
故選B
點評:此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,直線的兩點式方程以及點斜式方程,兩直線垂直時斜率滿足的關系,能找出何為過P最短的弦及最長的弦是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

11、已知P(3,0)是圓x2+y2-8x-2y+12=0內一點,則過P點的最短弦所在直線的方程是
x+y-3=0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•汕頭二模)已知拋物線和雙曲線都經過點M(1,2),它們在x軸上有共同焦點,對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求拋物線和雙曲線標準方程;
(2)已知動直線m過點P(3,0),交拋物線于A,B兩點,記以線段AP為直徑的圓為圓C,求證:存在垂直于x軸的直線l被圓C截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

點P(3,0)是圓x2+y2-8x-2y+12=0內一點,過點P的弦中最短的弦所在直線方程是


  1. A.
    x-y-3=0
  2. B.
    x+y-3=0
  3. C.
    x-y+3=0
  4. D.
    x+y+3=0

查看答案和解析>>

科目:高中數學 來源:2005-2006學年北京四中高二(上)期末數學試卷(文科)(解析版) 題型:選擇題

點P(3,0)是圓x2+y2-8x-2y+12=0內一點,過點P的弦中最短的弦所在直線方程是( )
A.x-y-3=0
B.x+y-3=0
C.x-y+3=0
D.x+y+3=0

查看答案和解析>>

同步練習冊答案