10.命題“?x∈R,x3-3x>0”的否定為( 。
A.?x∈R,x3-3x≤0B.?x∈R,x3-3x<0C.?x∈R,x3-3x≤0D.?x∈R,x3-3x>0

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行求解即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
即?x∈R,x3-3x≤0,
故選:C

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,關(guān)于正方體ABCD-A1B1C1D1,下面結(jié)論錯(cuò)誤的是( 。
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.該正方體的外接球和內(nèi)接球的半徑之比為2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知兩個(gè)圓O1和O2,它們的半徑分別是2和4,且|O1O2|=8,若動(dòng)圓M與圓O1內(nèi)切,又與O2外切,則動(dòng)圓圓心M的軌跡方程是( 。
A.B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值為7,則$\frac{6}{a}$+$\frac{1}$的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.命題p:?x∈R,2${\;}^{{x}^{2}-1}$<$\frac{1}{4}$,命題q:若M為曲線y2=4x2上一點(diǎn),A($\frac{5}{2}$,0),則|MA|的最小值為$\sqrt{5}$,那么下列命題為真命題的是(  )
A.(¬p)∧(¬q)B.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=(ex-1-1)(x-1),則( 。
A.當(dāng)x<0,有極大值為2-$\frac{4}{e}$B.當(dāng)x<0,有極小值為2-$\frac{4}{e}$
C.當(dāng)x>0,有極大值為0D.當(dāng)x>0,有極小值為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y-7≤0}\\{x≥2}\\{y≥1}\end{array}\right.$,則目標(biāo)函數(shù)z=-x+y的最小值為( 。
A.-3B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知拋物線C與雙曲線x2-y2=1有相同的焦點(diǎn),且頂點(diǎn)在原點(diǎn),則拋物線C的方程為( 。
A.y2=±2$\sqrt{2}$xB.y2=±2xC.y2=±4xD.y2=±4$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列直線中,與直線2x+y+1=0平行且與圓x2+y2=5相切的是( 。
A.2x+y+5=0B.x-2y+5=0C.$2x+y+5\sqrt{5}=0$D.$x-2y+5\sqrt{5}=0$

查看答案和解析>>

同步練習(xí)冊(cè)答案