【題目】某營(yíng)養(yǎng)師要求為某個(gè)兒童預(yù)訂午餐和晚餐.已知一個(gè)單位的午餐含12個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和6個(gè)單位的維生素C;一個(gè)單位的晚餐含8個(gè)單位的碳水化合物,6個(gè)單位的蛋白質(zhì)和10個(gè)單位的維生素C.另外,該兒童這兩餐需要的營(yíng)狀中至少含64個(gè)單位的碳水化合物和42個(gè)單位的蛋白質(zhì)和54個(gè)單位的維生素C.如果一個(gè)單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營(yíng)養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個(gè)單位的午餐和晚餐?
【答案】解:設(shè)為該兒童分別預(yù)訂x個(gè)單位的午餐和y個(gè)單位的晚餐,
設(shè)費(fèi)用為F,則F=2.5x+4y,
由題意知約束條件為:
畫出可行域如圖:
變換目標(biāo)函數(shù):
當(dāng)目標(biāo)函數(shù)過點(diǎn)A,即直線6x+6y=42與6x+10y=54的交點(diǎn)(4,3)時(shí),F(xiàn)取得最小值.
即要滿足營(yíng)養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為兒童分別預(yù)訂4個(gè)單位的午餐和3個(gè)單位的晚餐.
【解析】利用線性規(guī)劃的思想方法解決某些實(shí)際問題屬于直線方程的一個(gè)應(yīng)用.本題主要考查找出約束條件與目標(biāo)函數(shù),準(zhǔn)確地描畫可行域,再利用圖形直線求得滿足題設(shè)的最優(yōu)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條不重合的直線 和兩個(gè)不重合的平面 ,下列命題正確的是( )
A.若 , ,則
B.若 , ,且 ,則
C.若 , ,則
D.若 , ,且 ,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)當(dāng)m>﹣ 時(shí),解關(guān)于x的不等式(mx+a)(x﹣b)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間(﹣1,1)上的增函數(shù)f(x)= 為奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于t的不等式f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差不為零的等差數(shù)列,a10=15,且a3、a4、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x>0,則函數(shù) 與y2=logax(a>0,且a≠1)在同一坐標(biāo)系上的部分圖象只可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)把直線l的參數(shù)方程化為極坐標(biāo)方程,把曲線C的極坐標(biāo)方程化為普通方程;
(2)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y均有f(x)=f( )+f( ).當(dāng)x>0時(shí),f(x)>0
(1)判斷函數(shù)f(x)在R上的單調(diào)性并證明;
(2)設(shè)函數(shù)g(x)與函數(shù)f(x)的奇偶性相同,當(dāng)x≥0時(shí),g(x)=|x﹣m|﹣m(m>0),若對(duì)任意x∈R,不等式g(x﹣1)≤g(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com