【題目】已知數(shù)列{an}是公差不為零的等差數(shù)列,a10=15,且a3、a4、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】解:(Ⅰ)設(shè)數(shù)列{an}的公差為d,(d≠0),由已知得: ,即 ,解之得:
∴an=2n﹣5,(n∈N*).
(Ⅱ)∵bn= = ,n≥1.
Tn= + + +…+ ,①
Tn= + + +…+ + ,②
①﹣②得: Tn= +2( + +…+ )﹣ =﹣ + ,
∴Tn=﹣1﹣ (n∈N*
【解析】(Ⅰ)設(shè)數(shù)列{an}的公差為d,(d≠0),依題意,解方程組 可求得 ,從而可得數(shù)列{an}的通項(xiàng)公式;(Ⅱ)由于bn= = ,于是Tn= + + +…+ ,利用錯位相減法即可求得數(shù)列{bn}的前n項(xiàng)和Tn
【考點(diǎn)精析】利用等差數(shù)列的前n項(xiàng)和公式和數(shù)列的前n項(xiàng)和對題目進(jìn)行判斷即可得到答案,需要熟知前n項(xiàng)和公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐S﹣ABCD中,側(cè)棱與底面所成的角為α,側(cè)面與底面所成的角為β,側(cè)面等腰三角形的底角為γ,相鄰兩側(cè)面所成的二面角為θ,則α、β、γ、θ的大小關(guān)系是(
A.α<β<γ<θ
B.α<β<θ<γ
C.θ<α<γ<β
D.α<γ<β<θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運(yùn)算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數(shù)的k(k∈N+)叫做希望數(shù),則在區(qū)間[1,2016]內(nèi)所有希望數(shù)的和為(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,.

1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)解析式為 . (Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某營養(yǎng)師要求為某個兒童預(yù)訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營狀中至少含64個單位的碳水化合物和42個單位的蛋白質(zhì)和54個單位的維生素C.如果一個單位的午餐、晚餐的費(fèi)用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費(fèi)最少,應(yīng)當(dāng)為該兒童分別預(yù)訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),對于x∈R,都有 ,且滿足f(4)>﹣2, ,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案