【題目】現(xiàn)有甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標分數(shù)進行劃分,其中分數(shù)不小于分的為合格品,否則為次品.現(xiàn)隨機抽取兩種產(chǎn)品各件進行檢測,其結(jié)果如下:
測試指數(shù)分數(shù) | |||||
甲產(chǎn)品 | |||||
乙產(chǎn)品 |
(1)根據(jù)以上數(shù)據(jù),完成下邊的列聯(lián)表,并判斷是否有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異?
甲產(chǎn)品 | 乙產(chǎn)品 | 合計 | |
合格品 | |||
次品 |
(2)已知生產(chǎn)件甲產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損元;生產(chǎn)件乙產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損元.記為生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率)
參考公式:
【答案】(1)填表見解析;沒有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異(2)詳見解析
【解析】
(1)根據(jù)已知數(shù)據(jù)得出加甲乙產(chǎn)品數(shù)和合格品與次品數(shù),根據(jù)公式計算并下結(jié)論;
(2)隨機變量可能取值,分別計算概率并寫出分布列,計算相關(guān)期望.
(1)列聯(lián)表如下:
甲產(chǎn)品 | 乙產(chǎn)品 | 合計 | |
合格品 | |||
次品 | |||
合計 |
沒有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異
依題意,生產(chǎn)一件甲,乙產(chǎn)品為合格品的概率分別為
隨機變量可能取值
的分布列為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年上半年我國多個省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴大生產(chǎn);另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場形勢,決定響應(yīng)政府號召,擴大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認為與具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定每年的月日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機構(gòu)對位鋼琴老師暑假一天的授課量進行了統(tǒng)計,如下表所示:
授課量(單位:小時) | |||||
頻數(shù) |
培訓(xùn)機構(gòu)專業(yè)人員統(tǒng)計近年該校每年暑假天的課時量情況如下表:
課時量(單位:天) | |||||
頻數(shù) |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(1)估計位鋼琴老師一日的授課量的平均數(shù);
(2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價為元/小時,每天的各類生活成本為元/天;若不授課,不計成本,請依據(jù)往年的統(tǒng)計數(shù)據(jù),估計一位鋼琴老師天暑假授課利潤不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知兩點分別為橢圓的右頂點和上頂點,且,右準線的方程為.
(1)求橢圓的標準方程;
(2)過點的直線交橢圓于另一點,交于點.若以為直徑的圓經(jīng)過原點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)給出兩個條件:①,②,從中選出一個條件補充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個都選,則按第一個解答計分)在中,分別為內(nèi)角所對的邊( ).
(1)求;
(2)若,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA| =( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程
(1)寫出的普通方程和的直角坐標方程;
(2)設(shè)點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院人進行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關(guān)?請說明你的理由;
(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.
下面的臨界值表供參考:
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國范圍內(nèi)開始傳播,專家組認為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.
(1)求一天內(nèi)被感染人數(shù)為的概率與、的關(guān)系式和的數(shù)學(xué)期望;
(2)該病毒在進入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.
(i)求數(shù)列的通項公式,并證明數(shù)列為等比數(shù)列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時,計算此時所對應(yīng)的值和此時對應(yīng)的值,根據(jù)計算結(jié)果說明戴口罩的必要性.(取)
(結(jié)果保留整數(shù),參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com