(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點(diǎn).
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C-ANB1A1的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.∥,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使// 平面?若存在,求出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點(diǎn),N是BC1的中點(diǎn).
(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點(diǎn),求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐中,側(cè)棱平面,底面是平行四邊形,,,,分別是的中點(diǎn).
(1)求證:平面
(2)當(dāng)平面與底面所成二面角為時(shí),求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
[2013·廣州質(zhì)檢]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三個向量共面,則實(shí)數(shù)λ等于( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com