精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
2x(x<4)
f(x-1)(x≥4)
,則f(5)=
 
分析:此是分段函數求值,當x≥4時,所給表達式是一遞推關系,其步長為1,故可由此關系逐步轉化求f(5)的值.
解答:解:∵當x≥4時,f(x)=f(x-1)
∴f(5)=f(4)=f(3)
而當x<4時,f(x)=2x
∴f(5)=f(3)=23=8
故答案為:8.
點評:本題考點是分段函數求值,且在解析式中給出了一步長為1的遞推關系,在解題時要根據函數中不同區(qū)間上的解析式求值.在用此遞推關系轉化時,由于相關數的值的絕對值一般較大,轉化時要仔細推斷,免致不細心出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案