在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(-2,0)、A2(2,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m)、N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(2)已知F2(1,0),設(shè)直線l:y=kx+m與(1)中的軌跡M交于P、Q兩點(diǎn),直線F2P、F2Q的傾斜角為α、β,且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
解:(1)依題意知直線A1N1的方程為:y=(x+2),①
直線A2N2的方程為:y=-(x-2),②
設(shè)Q(x,y)是直線A1N1與A2N2的交點(diǎn),①×②得y2=-(x2-4),
由mn=3,整理得+=1.
∵N1、N2不與原點(diǎn)重合,∴點(diǎn)A1(-2,0)、A2(2,0)不在軌跡M上,
∴軌跡M的方程為+=1(x≠±2).
(2)由題意知,直線l的斜率存在且不為零,
聯(lián)立方程得,消去y,得(3+4k2)x2+8kmx+4m2-12=0,設(shè)P(x1,y1)、Q(x2,y2),則
由已知α+β=π,得kF2P+kF2Q=0,∴=0,
化簡(jiǎn),得2kx1x2+(m-k)(x1+x2)-2m=0,
代入,得-2m=0,
整理得m=-4k.
∴直線l的方程為y=k(x-4),因此直線l過定點(diǎn),該定點(diǎn)的坐標(biāo)為(4,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知圓C:x2+y2-2x+4y-4=0,問是否存在斜率為1的直線l,使l被圓C截得的弦為AB,以AB為直徑的圓經(jīng)過原點(diǎn),若存在,寫出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AB|=,|AF|<|BF|,則|AF|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
直線y=kx+2與拋物線y2=8x有且只有一個(gè)公共點(diǎn),則k的值為( )
A.1 B.1或3 C.0 D.1或0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(0,-1),直線l與拋物線C相交于A,B兩點(diǎn),若AB的中點(diǎn)為(2,-2),則直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某住宅小區(qū)計(jì)劃植樹不少于100棵,若第一天植2棵,以后每天植樹的棵數(shù)是前一天的2倍,則需要的最少天數(shù)n(n∈N*)等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等比數(shù)列{an}滿足an>0(n∈N*),且a5a2n-5=22n(n≥3),則當(dāng)n≥1時(shí),log2a1+log2a3+log2a5+…+log2a2n-1等于( )
(A)(n+1)2 (B)n2
(C)n(2n-1) (D)(n-1)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com