某經(jīng)銷商試銷A、B兩種商品一個月(30天)的記錄如下:

日銷售量(件)
 
0
 
1
 
2
 
3
 
4
 
5
 
商品A的頻數(shù)
 
2
 
5
 
7
 
7
 
5
 
4
 
商品B的頻數(shù)
 
4
 
4
 
6
 
8
 
5
 
3
 
若售出每種商品1件均獲利40元,將頻率視為概率。
(Ⅰ)求B商品日銷售量不超過3件的概率;
(Ⅱ)由于某種原因,該商家決定只選擇經(jīng)銷A、B商品的一種,你認為應(yīng)選擇哪種商品,說明理由。

(Ⅰ) (Ⅱ)應(yīng)選擇經(jīng)銷商品A

解析試題分析:(Ⅰ)根據(jù)題意B商品日銷售量不超過3件拆分為B商品日銷售量為0,1,2,3這四個互斥事件,逐一求出其概率相加就可;(Ⅱ)比較商品A,B的日均利潤平均值的大小,選平均值較大者.
試題解析:(Ⅰ)記事件“商品B日銷售量為i件”為Bi,i=0,1,2,3,4,5.
商品B日銷售量不超過3件的概率為
P=P(B0)+P(B1)+P(B2)+P(B3)=
(Ⅱ)商品A,B的日均利潤平均值分別為
=40×,
=40×=100,
因為,所以應(yīng)經(jīng)銷商品A.
考點:1、古典概型;2、計算平均值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

省少年籃球隊要從甲、乙兩所體校選拔隊員,F(xiàn)將這兩所體校共20名學(xué)生的身高繪制成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”.

(1)用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,如果從這5人中隨
機選2人,那么至少有一人是“高個子”的概率是多少?
(2)從兩隊的“高個子”中各隨機抽取1人,求恰有1人身高達到190cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了了解某班的男女生學(xué)習(xí)體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù)。

(Ⅰ)若該班男女生平均分數(shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機抽取2名,優(yōu)秀的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小王經(jīng)營一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個現(xiàn)烤面包可獲利10元,若當(dāng)天賣不完,則未賣出的現(xiàn)烤面包因過期每個虧損5元.經(jīng)統(tǒng)計,得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個數(shù)及天數(shù)如下表:

售出個數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計概率的統(tǒng)計思想,解答下列問題:
(Ⅰ)計算小王某天售出該現(xiàn)烤面包超過13個的概率;
(Ⅱ)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個的天數(shù)大于3天,則小王決定增加訂購量. 試求小王增加訂購量的概率.
(Ⅲ)若小王每天訂購14個該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某舞蹈小組有2名男生和3名女生.現(xiàn)從中任選2人參加表演,記為選取女生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如下數(shù)據(jù):

(Ⅰ)若用表中數(shù)據(jù)所得頻率代替概率,則處罰10元時與處罰20元時,行人會闖紅燈的概率的差是多少?
(Ⅱ)若從這5種處罰金額中隨機抽取2種不同的金額進行處罰,在兩個路口進行試驗.
求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校50名學(xué)生參加智力答題活動,每人回答3個問題,答對題目個數(shù)及對應(yīng)人數(shù)統(tǒng)計結(jié)果見下表:

答對題目個數(shù)
0
1
2
3
人數(shù)
5
10
20
15
根據(jù)上表信息解答以下問題:
(Ⅰ)從50名學(xué)生中任選兩人,求兩人答對題目個數(shù)之和為4或5的概率;
(Ⅱ)從50名學(xué)生中任選兩人,用X表示這兩名學(xué)生答對題目個數(shù)之差的絕對值,求隨機變量X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人參加普法知識競賽,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人各抽一道(不重復(fù)).
(1)甲抽到選擇題,乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人進行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)束相互獨立,第1局甲當(dāng)裁判.
(Ⅰ)求第4局甲當(dāng)裁判的概率;
(Ⅱ)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案